ARIES-Institutional Digital Repository

Shocks in Radiatively Driven Time-dependent, Relativistic Jets around Black Holes

Show simple item record

dc.contributor.author Joshi, Raj Kishor
dc.contributor.author Debnath, Sanjit
dc.contributor.author Chattopadhyay, Indranil
dc.date.accessioned 2024-05-08T06:05:05Z
dc.date.available 2024-05-08T06:05:05Z
dc.date.issued 2022-07
dc.identifier.uri https://doi.org/10.3847/1538-4357/ac70de
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/1576
dc.description.abstract We study time-dependent relativistic jets under the influence of the radiation field of the accretion disk. The accretion disk consists of an inner compact corona and an outer sub-Keplerian disk. The thermodynamics of the fluid is governed by a relativistic equation of state (EOS) for multispecies fluid that enables us to study the effect of composition on jet dynamics. Jets originate from the vicinity of the central black hole, where the effect of gravity is significant and traverses large distances where only special relativistic treatment is sufficient. So we have modified the flat metric to include the effect of gravity. In this modified relativistic framework we have developed a new total variation diminishing routine along with a multispecies EOS for the purpose. We show that the acceleration of jets crucially depends on flow composition. All the results presented are transonic in nature; starting from very low injection velocities, the jets can achieve high Lorentz factors. For sub-Eddington luminosities, lepton-dominated jets can be accelerated to Lorentz factors >50. The change in radiation field due to variation in the accretion disk dynamics will be propagated to the jet in a finite amount of time. Hence, any change in radiation field due to a change in disk configuration will affect the lower part of the jet before it affects the outer part. This can drive shock transition in the jet flow. Depending on the disk oscillation frequency, amplitude, and jet parameters, these shocks can collide with each other and may trigger shock cascades. en_US
dc.language.iso en en_US
dc.publisher The Astrophysical Journal en_US
dc.relation.ispartofseries 1887;apj933-75
dc.subject Hydrodynamics en_US
dc.subject Computational methods en_US
dc.subject Relativistic jets en_US
dc.subject Black hole physics en_US
dc.title Shocks in Radiatively Driven Time-dependent, Relativistic Jets around Black Holes en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ARIES-IDR


Advanced Search

Browse

My Account

Context