dc.contributor.author |
Bandyopadhyay, Avrajit ,et.al. |
|
dc.contributor.author |
Pandey, J. C. |
|
dc.date.accessioned |
2024-05-02T10:13:32Z |
|
dc.date.available |
2024-05-02T10:13:32Z |
|
dc.date.issued |
2022-10 |
|
dc.identifier.uri |
https://doi.org/10.3847/1538-4357/ac8b0f |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/1553 |
|
dc.description.abstract |
We present a study on the detailed elemental abundances of newly identified, bright, very metal-poor stars with the
detection of lithium, initially observed as part of the SDSS/MARVELS pre-survey. These stars were selected for
high-resolution spectroscopic follow-up as part of the HESP-GOMPA survey. In this work, we discuss the Li
abundances detected for several stars in the survey, which include main-sequence stars, subgiants, and red giants.
Different classes of stars are found to exhibit very similar distributions of Li, which points toward a common
origin. We derive a scaling relation for the depletion of Li as a function of temperature for giants and main sequence stars; the majority of the samples from the literature were found to fall within 1σ (0.19 and 0.12 dex K−1
for giants and dwarfs, respectively) of this relationship. We also report the existence of a slope of the Li abundance
as a function of distance from the Galactic plane, indicating mixed stellar populations. Most Li-rich stars are found
to be in or close to the Galactic plane. Along with Li, we have derived detailed abundances for C, odd-Z, α-, Fe peak, and neutron-capture elements for each star. We have also used astrometric parameters from Gaia-EDR3 to
complement our study, and derived kinematics to differentiate between the motions of the stars—those formed
in situ and those accreted. The stellar population of the Spite plateau, including additional stars from the literature,
is found to have significant contributions from stars formed in situ and through accretion. The orbits for the
program stars have also been derived and studied for a period of 5 Gyr backwards in time. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
The Astrophysical Journal |
en_US |
dc.relation.ispartofseries |
1910;apj937-52 |
|
dc.subject |
Stellar atmospheres |
en_US |
dc.subject |
Abundance ratios |
en_US |
dc.subject |
Stellar abundances |
en_US |
dc.subject |
Lithium stars |
en_US |
dc.subject |
Metallicity |
en_US |
dc.subject |
Population II stars |
en_US |
dc.subject |
Chemically peculiar stars |
en_US |
dc.subject |
High resolution spectroscopy |
en_US |
dc.subject |
Stellar nucleosynthesis |
en_US |
dc.subject |
Nucleosynthesis |
en_US |
dc.subject |
Stellar populations |
en_US |
dc.title |
Li Distribution, Kinematics, and Detailed Abundance Analysis among Very Metal-poor Stars in the Galactic Halo from the HESP-GOMPA Survey |
en_US |
dc.type |
Article |
en_US |