ARIES-Institutional Digital Repository

Ionospheric response to total solar eclipse of 22 July 2009 in different Indian regions

Show simple item record

dc.contributor.author Kumar, S.
dc.contributor.author Singh, A. K.
dc.contributor.author Singh, R. P.
dc.date.accessioned 2015-05-22T04:56:41Z
dc.date.available 2015-05-22T04:56:41Z
dc.date.issued 2013-09-09
dc.identifier.citation Kumar, S., Singh, A. K., and Singh, R. P.: Ionospheric response to total solar eclipse of 22 July 2009 in different Indian regions, Ann. Geophys., 31, 1549-1558, doi:10.5194/angeo-31-1549-2013, 2013. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1066
dc.description.abstract The variability of ionospheric response to the total solar eclipse of 22 July 2009 has been studied analyzing the GPS data recorded at the four Indian low-latitude stations Varanasi (100% obscuration), Kanpur (95% obscuration), Hyderabad (84% obscuration) and Bangalore (72% obscuration). The retrieved ionospheric vertical total electron content (VTEC) shows a significant reduction (reflected by all PRNs (satellites) at all stations) with a maximum of 48% at Varanasi (PRN 14), which decreases to 30% at Bangalore (PRN 14). Data from PRN 31 show a maximum of 54% at Kanpur and 26% at Hyderabad. The maximum decrement in VTEC occurs some time (2–15 min) after the maximum obscuration. The reduction in VTEC compared to the quiet mean VTEC depends on latitude as well as longitude, which also depends on the location of the satellite with respect to the solar eclipse path. The amount of reduction in VTEC decreases as the present obscuration decreases, which is directly related to the electron production by the photoionization process. The analysis of electron density height profile derived from the COSMIC (Constellation Observing System for Meteorology, Ionosphere & Climate) satellite over the Indian region shows significant reduction from 100 km altitude up to 800 km altitude with a maximum of 48% at 360 km altitude. The oscillatory nature in total electron content data at all stations is observed with different wave periods lying between 40 and 120 min, which are attributed to gravity wave effects generated in the lower atmosphere during the total solar eclipse. en_US
dc.language.iso en_US en_US
dc.publisher Annales Geophysicae en_US
dc.relation.ispartofseries ag31-1549
dc.subject Radio Science en_US
dc.title Ionospheric response to total solar eclipse of 22 July 2009 in different Indian regions en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ARIES-IDR


Advanced Search

Browse

My Account

Context