GRAVITATIONAL RADIATION AND SPIRALLING TIME OF CLOSE BINARY SYSTEMS (II)

(Letter to the Editor)

T. D. PADALIA

Uttar Pradesh State Observatory, Manora Peak, Nainital, India

(Received 28 June, 1988)

Abstract. Power-output by gravitational radiation (P_B) and spiralling time (τ_0) for individual systems of twelve early (B) type binary systems have been evaluated. A new relation between P_B and τ_0 obtained. It is found that most of these systems lie in the spiralling time range $\sim 10^9$ years.

1. Introduction

In our previous paper (Padalia, 1987), we have evaluated P_B and τ_0 values for sixteen typical eclipsing binary systems and a relation between P_B and τ_0 was established. Here, the study includes twelve early-type binary systems all earlier than A-type. The systems included are: V 701 Sco, V Pup, AH Cep, IU Aur, μ Sco, SV Cen, SX Aur, Y Cyg, V 478 Cyg, V 337 Aql, CW Cep, and σ Aql.

The masses, period, and radii of relative orbits adopted in the present paper are given in Table I.

2. Discussions and Results

Equations for determining P_B and τ_0 and assumptions used are the same as mentioned in our (Padalia, 1987) earlier paper, viz.,

$$P_B = \left(\frac{\mu}{M_\odot}\right)^2 \left(\frac{M}{M_\odot}\right)^{4/3} P^{-10/3} 3.0 \times 10^{26} W, \tag{1}$$

$$\tau_0 = \frac{5c^5 a_0^4}{256G^3 \mu M^2} \ . \tag{2}$$

The values of P_B and τ_0 thus determined are reported in Table I. Like our earlier findings, it is interesting to note that P_B is inversely proportional to τ_0 . It is found that spiralling time for all these systems is of the order of $\sim 10^9$ years as against 10^{10} to 10^{12} years for 16 typical binary systems as earlier reported.

Gravitational radiation P_B (in watts) along the X-axis and spiralling time τ_0 (in years) along the Y-axis have been plotted in Figure 1. It is found that X and Y follow the

Astrophysics and Space Science 149 (1988) 379–382. © 1988 by Kluwer Academic Publishers.

TABLE I Gravitational radiation and spiralling time of twelve early-type binary systems $^{\mathrm{a}}$

		1 0	ונמנוסוומו וממו	acton and	spirannis univ	Oravitational factation and spirating time of twelve early type ontails systems	type cinain sys			
Name of the Sp. type oinary systems	Sp. type	$M_1\left(M_\odot ight)$	$M_2\left(M_\odot ight)$	Period in days	Radius of relative orbit $a_0(R_{\odot})$	Power output (P_B) (W)	Spiral time (τ_0) (years)	$X \qquad (\log P_B - 23)$	Y (log $ au_0 - 9$)	Remarks
V 701 Sco	B1, B1	9.1	9.1	0.762	9.24	184.5×10^{23}	0.72×10^{9}	2.266	- 0.143	
Pup	、 I	19.1	11.3	1.455	16.05	103.1×10^{23}	1.50×10^{9}	2.013	0.176	
H Čep	B0.5V, B0.5V	16.1	13.9	1.775	18.05	57.6×10^{23}	2.35×10^{9}	1.760	0.371	
Pup	B1, B3	14.80	7.8	1.454	15.27	35.9×10^{23}	3.10×10^{9}	1.555	0.491	
U Aur	B0P, B0.5	16.0	11.0	1.811	18.77	35.7×10^{23}	3.88×10^{9}	1.553	0.588	
Sco	B1.5V, B3	12.8	8.4	1.446	14.90	33.2×10^{23}	3.22×10^{9}	1.521	0.508	
SV Cen	B1, B4.5	9.3	11.1	1.659	16.10	20.0×10^{23}	4.72×10^{9}	1.302	0.674	
X Aur	B3.5, B6	9.4	4.3	1.210	11.66	17.2×10^{23}	3.99×10^{9}	1.235	0.601	
Cyg	8,60,8,60	16.7	16.7	3.000	28.20	14.5×10^{23}	10.10×10^{9}	1.161	1.004	
478 Cyg	B0V, B0V	15.6	15.6	2.881	26.90	13.2×10^{23}	10.26×10^{9}	1.122	1.011	
V Cen	B1V, B6.5III	7.7	9.6	1.659	15.30	11.3×10^{23}	6.37×10^{9}	1.055	0.804	
337 Aql	B0.5V, B2V	17.0	10.0	2.734	24.80	88.4×10^{23}	12.24×10^9	0.924	1.088	
W Cep	B0.4, B0.7	11.8	11.1	2.730	23.30	5.6×10^{23}	14.62×10^{9}	0.748	1.165	
r Aql ُ	B3V, B3V	8.9	5.4	1.950	18.95	2.1×10^{23}	42.80×10^{9}	0.322	1.631	

^a The systems are mostly taken from a paper by Nakamura and Nakamura (1987).

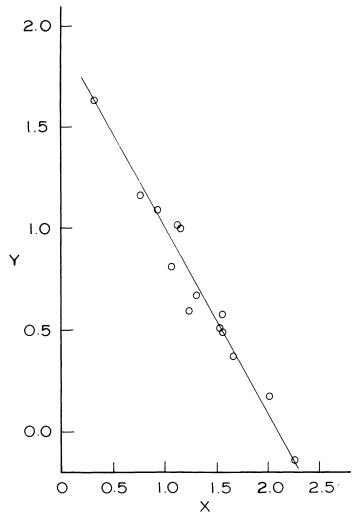


Fig. 1. Relation between spiralling time (along Y-axis) and gravitational radiation (along X-axis) for twelve early-type binary systems, where $X = \log P_B - 23$ and $Y = \log \tau_0 - 9$.

relation: viz.,

$$Y = -0.920X + 1.93$$
,

where $X = \log P_B - 23$ and $Y = \log \tau_0 - 9$.

An inspection of Table I indicates that all the systems are massive binaries in the mass group 7 to 19 solar masses. The systems have power outputs (P_B) of the order of 10^{23} W and spiralling times $\tau_0 \sim 10^9$ years. It would be worthwhile to search out such binaries in this mass group, which are of O and B spectral types.

Attention is drawn to the anomalous position of the stars CW Cep and σ Aql (which appear to be massive) in Figure 1 of our earlier (Padalia, 1987) paper. However, the present investigation makes the situation clearer since now they appear to be members of the B-type group.

382 T. D. PADALIA

When plotted in Figure 1 of the present paper, they fit well in the straight line. The places of CW Cep and σ Aql in Figure 1 of our earlier paper, should be taken by low-mass (1–5 solar mass) binary systems and later than B-spectral type.

It is concluded from the present findings that binary systems which are of similar spectral type and fall in a definite mass group should be related by different equations. A considerable gap is found between ZZ Cep and AO Mon in Figure 1 of our earlier paper. More data is required to explain this gap.

References

Nakamura, M. and Nakamura, N.: 1987, Astrophys. Space Sci. 134, 170.

Padalia, T. D.: 1987, Astrophys. Space Sci. 137, 191.