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The mesospheric temperature mapper (MTM) measurements on mesospheric OH (6, 2) and O2 (0, 1) band
emissions from Maui, Hawaii during July, 2002 show significant day-to-day variability. The nocturnal variability
reveals prominent wave signatures with a periodicity ranging from 6 to 13 h. For better characterization of the
nocturnal wave in the data, a Krassovsky’s η (∼|η|eiϕ) analysis was carried out. Deduced Krassovsky parameters
show significant variability, with ranges of |η| ∼ 1.7–3.9 for the OH data and ∼4.3–13 for the O2 data. The phase
values of Krassovsky parameters exhibit larger variability, with variations from approximately −91◦ to +23◦ for
the OH data and −45◦ to −10◦ for the O2 data. Comparison of these values with existing observations and models
show large deviations from model values and relatively better agreements with the observed values reported by
other investigators. The deduced vertical wavelength from |η| and ϕ indicates that our data is mostly dominated
by upward propagating waves with occasional high values ≥100 km, implying possible evanescent waves.
Key words: Mesosphere, nightglow, wave and tides, chemistry.

1. Introduction
Gravity waves and tides play a very important role in

carrying energy and momentum from the lower atmosphere
to the upper atmosphere. Their interaction with mean winds
and other wave modes while passing through the middle
atmosphere results in their energy and momentum being
dissipated into the ambient medium and, consequently, their
having a dominant role on the middle atmospheric wind
and temperature field variability (Murthy, 1998). The first
theoretical study of gravity wave, tides, and their effects
on middle atmospheric dynamics was carried out by Hines
(1960), and this study has been the focus of attention for
the atmospheric science community (Fritts and Alexander,
2003). For investigations on gravity wave and tides, airglow
monitoring has also been a popular tool together with radar
(e.g., Vincent and Lesicar, 1991; Pancheva et al., 2006) and
lidar (e.g., Gardner and Taylor, 1998). There have been
several reports that utilize airglow monitoring to decipher
the planetary waves (e.g., Takahashi et al., 2002), tidal
features (e.g., Taori et al., 2005), and shorter period gravity
wave activities at mesospheric altitudes (Takahashi et al.,
1999; Taori and Taylor, 2006; Taori et al., 2007; Suzuki et
al., 2007).

When a propagating wave (gravity wave) in the atmo-
sphere passes through an airglow layer, it creates perturba-
tions in density as well as in temperature and, therefore,
such waves can be characterized based on these induced
adiabatic perturbations in the intensity and temperatures of
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the airglow emission. It was Krassovsky (1972) who intro-
duced a quantity η (for hydroxyl emission) to characterize
the wave-induced perturbations as a ratio of normalized in-
tensity perturbations to the associated normalized tempera-
ture perturbations. This quantity was initially defined as a
real quantity, but subsequent model studies have redefined it
as a complex quantity, given as η = |η|eiϕ . The magnitude
of η is defined as

|η| = (�I/〈I 〉)
(�T/〈T 〉) (1)

where �I and �T are the perturbation amplitude of the ob-
served wave in the intensity and temperature data, respec-
tively, and 〈I 〉 and 〈T 〉 are the time-averaged band intensity
and rotational temperature, respectively. The phase part of
the Krassovsky parameter is defined as


 = 
I − 
T (2)

where 
I and 
T are the phases of the observed wave in
terms of intensity and temperatures, respectively. If the
intensity leads the temperature, then 
 will be positive,
and if the temperature leads the intensity, then 
 will be
negative.

The vertical wavelength (λz) can also be estimated using
the calculated η and 
 values as follows (Tarasick and
Hines, 1990).

λz = 2πγ H

(γ − 1)|η| sin(
)
(3)

where γ = C p/Cv = 1.4 is the ratio of specific heats, and
H = 6 km is the scale height. This formula is valid for
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the zenith observation and for plane waves and not valid
for the evanescent waves. In this study, we have deduced
the Krassovsky parameters and vertical wavelengths for the
mesospheric OH and O2 airglow emission data from Maui
(20.8◦N, 156.2◦W), Hawaii during the summer months of
2002, when the mesospheric airglow data exhibited a larger
population of principal wave with an approximately 8-h
periodicity (Taori et al., 2005).

2. Instrumentation and Observation
The mesospheric temperature mapper (MTM), developed

at Utah State University, has been utilized for the present
study. The MTM measures mesospheric OH (6, 2) and O2

(0, 1) band emissions, and line intensity, and temperature
are deduced with an accuracy of more than approximately
0.5% for intensity and temperature within 3 min. It has a
large format 1024×1024-pixel cooled CCD array coupled
to a 90◦ circular field of view telecentric lens system. The
MTM uses very low bandwidth (�λ ∼ 1.2 nm) interference
filters at five different center wavelengths (840, 846.5 nm
for the OH (6, 2) band; 866, 868 nm for the O2 (0, 1)

band; 857 nm for the background emissions) in a sequential
manner and an exposure time of 60 s for each filter, resulting
in a cadence of 5.5 min. The CCD data are again binned into
8×8 on the chip to form 128×128 super-pixel image with a
resultant zenithal foot print of 0.9×0.9 km per super-pixel
for optimizing the temperature determination. The detailed
information on the MTM could be found elsewhere (e.g.,
Taori et al., 2005).

The MTM has been operating since November 2001 at
Maui (20.8◦N, 156.2◦W), Hawaii as a part of the Maui-
MALT program, which is jointly sponsored by U.S. Air
Force Office of Scientific Research (AFOSR) and National
Science Foundation (NSF). The observation period was the
month July, 2002, when a large cluster of clear nights per-
sisted for more than 5 h, enabling good estimates for night-
to-night variability and long-period wave characterization
during the summer months.

3. Results and Discussion
As part of Maui-MALT campaign, most of the July 2002

data has already been reported by Taori et al. (2005), who
elaborated on the presence of a terdiurnal wave in the meso-
spheric temperature data together with its relation to wind
fields. However, a detailed study on the wave characteriza-
tion using the simultaneous intensity and temperature data
for July 2002 has remained largely untouched, these data
are the subject of our study.

A summary of the observed temperature variability dur-
ing July 2–19, 2002 is plotted in Fig. 1 as a contour of
hourly averaged temperature data with day number along
the x-axis. The data are averaged for 1 h to smooth out
short-period waves, and this procedure enabled us to visu-
alize and study the long-period structures in the data set.
The temperature data exhibit large peak-to-peak variations
of about 40 K during this period, with a range of 170 K to
210 K. The presence of periodic oscillations with periodici-
ties of about 2 days in the data is interesting. This feature is
evident in both the OH and O2 temperature data. The phase
of these features occurred during 0900–1300 UT near day

Fig. 1. A summary plot of mesospheric OH and O2 temperature variations
during July 2002 over Maui, Hawaii. Large night-to-night variability is
evident in the plot.

numbers 189, 191, 193, and 195. A similar trend was ev-
ident in the intensity data. Without a detailed quantitative
analysis, it is difficult to conclude whether this is a signa-
ture of the quasi 2-day wave in mesospheric temperatures,
and limited night-time data restricted us from examining
such possibilities. However, as the purpose of this plot is
to summarize the temperature variability during July 2002,
we refrain from discussions on the possibility of quasi 2-day
wave and associated dynamics.

Further, as noted by Taori et al. (2005), the best-fit anal-
ysis on the variability of the nocturnal temperature exhib-
ited an oscillation periodicity of 6–14 h, with large popu-
lation of periodicity close to 8 h in the data set with am-
plitudes as large as 10–12 K. A Krassovsky analysis was
carried out to better characterize this wave. As explained
in Eq. (1), a Krassovsky analysis provides amplitude ‘η’
and phase ‘ϕ’ information, with amplitude being a mea-
sure of the effective transfer function of the density per-
turbation to cause the temperature perturbations and phase
being a measure of the altitudinal difference between the
corresponding fluctuations in their maxima in intensity and
temperature profiles (Swenson and Gardner, 1998). Simi-
lar to the analysis described by Taori et al. (2005); a simple
best-fit cosine model was used to determine the periodic-
ity and amplitude of the perturbation in the nocturnal tem-
perature and intensity data. An example of this analysis is
shown in Fig. 2 for day number 190, 2002. A dominant
long-period wave (principal wave) with short-period oscil-
latory features is evident in these data. The best-fit result
shows that 8.6±0.1-h and 8.8±0.3-h waves with amplitude
10.5±0.4 K and 10.9±0.7 K are present in the OH and O2

temperature data, respectively (small differences in values
with earlier reported periodicities and amplitudes by Taori
et al. (2005) are the result of different methods adopted for
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Fig. 2. An example of nocturnal variability in mesospheric OH and O2 emissions. The connected symbols represent the mean deviations in OH and O2
data for temperature (top panels) and intensity (bottom panels) variability for UT day 190, 2002. Solid lines in the plot show the result of a simple
best-fit cosine model for an estimate on the principal wave periodicity and amplitude. Clearly visible in the data for both emissions is a long-period
wave with a period of approximately 8 h.

Table 1. Derived wave parameters for OH data during July 2002.

Day no. Wave period (h) Relative temperature Relative intensity |η| ϕ (degree) λz (km)

amplitude (%) amplitude (%)

183 6.3±1.0 3.2 5.6 1.72±0.97 −41.2±13.2 −116.6±72.6

187 7.2±0.4 3.5 11.1 3.13±0.68 −77±6.6 −43.3±9.5

188 7.6±0.2 4.9 16.0 3.24±0.34 −42.1±4.8 60.9±8.6

189 8.2±0.6 3.5 11.9 3.41±0.59 22.8±4.7 99.4±25.8

190 8.4±0.2 5.4 20.8 3.86±0.24 −14.57±4.3 −138±41.4

191 7.7±0.6 3.2 9.4 2.94±0.69 −27.58±5.1 −97.2±28.2

192 10.6±0.4 5.2 16.0 3.06±0.24 −25.5±8.5 −98.9±31.5

193 12.6±0.8 5.9 14.4 2.42±0.27 −26.57±3.3 −122.6±19.6

194 7.8±0.2 5.4 18.9 3.52±0.48 −26.1±4.5 −86.1±18.3

195 8.2±0.2 6.5 23.8 3.66±0.29 −13.17±4.4 −157.9±53.3

196 13.4±1.0 5.6 17.7 3.18±0.19 −16.08±2.9 −174.7±38

197 7.0±0.1 9.1 32.2 3.55±0.28 −52.45±5.2 −47±4.9

198 7.6±0.4 3.6 19.6 5.38±0.50 −41.21±5.2 −37.1±5.2

200 6.8±0.4 5.6 14.9 2.64±0.39 −90.53±7.4 −49.9±7.4

bad data point removal). The principal wave periodicities
obtained from the temperature data are then forced to their
corresponding intensity data for the best estimates of the
amplitude and phase of the corresponding induced oscilla-
tions in intensities. The amplitude of Krassovsky’s η has
been calculated as given in Eq. (1). The nocturnal mean
temperatures for OH and O2 are 192.6 and 196.3 K, respec-
tively, with mean band intensities (relative units/equivalent
counts) of 86,368 (for OH) and 40,661 counts (for O2), re-
sulting in |η| values of 3.86±0.24 and 7.13±0.50 for the

OH and O2 data, respectively. The phase values ‘ϕ’ of the
Krassovsky parameter can be deduced by taking the differ-
ence between the intensity and temperature phase of the
wave as described in Eq. (2). The intensity data for OH
shows a lag of 0.25 h behind the temperature data, which
is equivalent to an ϕ of approximately −14.57±4.3◦. Simi-
larly, for the O2 data, the intensity wave also lags behind the
temperature one by approximately 0.4 h, giving rise to an ϕ

of approximately −33.6±4.0◦. The above analysis was car-
ried out on all 14 nights (Days 183–200), when prominent
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Table 2. Derived wave parameters for O2 data during July 2002.

Day no. Wave period (h) Relative temperature Relative intensity |η| ϕ (degree) λz (km)

amplitude (%) amplitude (%)

183 8.5±2.0 9.4 45.2 4.79±0.80 −27.88±10.7 −59.6±23.6

187 7.5±0.8 5.7 31.5 5.53±0.95 −28.8±5.7 −49.8±12.4

188 10.2±0.8 4.6 25.8 5.65±0.91 −30.35±4.2 −46.2±9.5

189 8.2±0.6 6.5 28.3 4.33±0.61 −31.17±4.9 −59.2±11.9

190 9.0±0.2 5.5 39.2 7.13±0.50 −33.6±4.1 −33.7±4.3

191 8.8±0.5 5.2 30.5 5.91±1.07 −38.45±4.6 −35.9±7.5

192 9.0±0.3 5.5 27.1 4.90±0.39 −24±8.0 −76.5±29.1

193 9.8±0.4 2.9 38.3 12.88±1.01 −22.04±3.8 −27.6±5

194 8.1±0.2 5.7 48.3 8.40±0.39 −23.55±4.5 −39.3±7.3

195 8.3±0.2 5.9 38.0 6.37±0.32 −25.15±4.4 −48.6±8.2

196 11.4±0.4 3.2 31.8 9.94±0.71 −44.21±3.5 −19±1.8

197 8.2±0.1 8.6 71.8 8.29±0.37 −13.17±4.4 −69.8±23

198 6.9±0.2 3.5 20.5 5.91±0.56 −65.74±5.5 −24.5±2.6

200 7.6±0.2 5.6 48.2 8.59±0.47 −9.4±4.7 −96.3±49.3

Fig. 3. A comparison of Krassovsky parameters for both OH and O2 data to their respective wave periods. The x-axis shows the wave periodicity,
and the y-axis is for Krassovsky parameters (η, ϕ) in each plot. A close resemblance between the observational values and discrepancy between
the observational and theoretical estimates are noteworthy. The legends in the figure are as following: O2 emission: (η: 1, Hickey et al. 500 km;
2, Hickey et al. 1000 km; 3, Tarasick and Shepherd 500 km; 4, Tarasick and Shepherd 1000 km; 5, Viereck and Deehr (1989); 6, Takahashi et al.
(1992); 7, Reisin and Scheer (1996); 8, present study; 9, Lopez-Gonzalez et al. (2005)); (
: 1, Hickey et al. 500 km; 2, Hickey et al. 1000 km; 3,
Tarasick and Shepherd, 500 km; 4, Tarasick and Shepherd, 1000 km; 5, Viereck and Deehr (1989); 6, Reisin and Scheer (1996); 7, present study;
8, Lopez-Gonzalez et al. (2005)). OH emission: ((η: 1, Schubert et al. 500 km; 2, Schubert et al. 1000 km; 3, Tarasick and Shepherd 500 km; 4,
Tarasick and Shepherd 1000 km; 5, Viereck and Deehr (1989); 6, Takahashi et al. (1992); 7, Oznovich et al. (1995); 8, Drob et al. (1996); 9, Reisin
and Scheer (1996); 10, Taylor et al. (2001); 11, Walterscheid and Schubert (1995); 12, present study; 13, Lopez-Gonzalez et al. (2005); 14, Oznovich
et al. (1997)); (
: 1, Schubert et al. 500 km; 2, Schubert et al. 1000 km; 3, Tarasick and Shepherd 500 km; 4, Tarasick and Shepherd 1000 km; 5,
Viereck and Deehr (1989); 6, Oznovich et al. (1995); 7, Drob et al. (1996); 8, Reisin and Scheer (1996); 9, Taylor et al. (2001); 10, Walterscheid and
Schubert (1995); 11, present study; 12, Lopez-Gonzalez et al. (2005); 13, Oznovich et al. (1997)).

wave features were visible. It is noteworthy that during this
period, the data is predominantly night waves with periods
of approximately 8 h, with corresponding temperature am-
plitudes ranging from 5 to 15 K. Further, the |η| values were

found to vary from 1.7 to 5.4 for OH and from 4 to 12 for
the O2 data. The phase ‘ϕ’ values exhibit a larger variabil-
ity, with values varying from −91◦ to +23◦. The vertical
wavelength λz , calculated using |η| and ϕ values with the
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help of Eq. (3) turns out to be approximately −138±41.4
and −33.7±4.3 km for OH and O2, respectively. Details of
the deduced wave parameters are shown in Table 1 (for OH)
and Table 2 (for O2).

As mentioned above, the deduced Krassovsky parame-
ters, show large differences from one night to other, indi-
cating a high degree of dynamical variability at mesospheric
altitudes during July 2002 over Hawaii. Figure 3 shows a
comparison of our results for η and 
 with those of earlier
reports, taking the average arithmetic value with respect to
periodicity, which ranges from 6- to 12-h waves (Viereck
and Deehr, 1989; Takahashi et al., 1992; Oznovich et al.,
1995, 1997; Drob, 1996; Reisin and Scheer, 1996; Taylor
et al., 2001; Lopez-Gonzalez et al., 2005), and model es-
timates of Schubert et al. (1991), Tarasick and Shepherd
(1992a, b), Walterscheid and Schubert (1995), and Hickey
et al. (1993). It is evident that the observed η and ϕ val-
ues in our study show a large spread in their distribution as
compared to the model values. A similar spread in the dis-
tribution of observed values of |η| has also been observed
by other investigators (e.g., Takahashi et al., 1992). In the
plot, error bars in our η and ϕ values represent the uncer-
tainty in calculating the parameter, whereas in other inves-
tigators’ cases, error bars are representative of the range of
variability of deduced parameters in their respective reports.
It is noteworthy that the values of η for the O2 data in our
study lie somewhere between the model estimates and the
values observed by other investigators, whereas for OH, our
η values are less than the model values on most occasions.
The variation in the O2 phase shows that most of the time
we were observing values lower than the model estimates,
whereas that for the OH phase fell between the ranges of
model values of several authors.

In particular, Reisin and Scheer (1996) found mean val-
ues of |η| = 5.5 ± 0.6 and ϕ = −66◦ for OH and of
|η| = 7.2 ± 0.5 and ϕ = −36◦ for O2 for the simultaneous
O2 and OH observations. The deduced values with our OH
and O2 data compares well with those of Reisin and Scheer
(1996), however, with the OH values being in approximate
agreement. In another study, Lopez-Gonzalez et al. (2005),
based on long-term observations with a spectral airglow
temperature imager (SATI) from a mid-latitude station, re-
ported a mean |η| of approximately 5.89 for semi-diurnal
tides during April to September for the O2 data and an |η|
of approximately 18.1 for the OH data, with extreme vari-
ability (range shown in Fig. 3); these results do not agree
with our results. In contrast, our observed |η| (7.04±0.65)
is a good match with the O2 emission values reported by
Takahashi et al. (1992) (6.9±0.3). In general, we find that
there are significant differences in the calculated parame-
ters for OH among various investigators. This may be due
to the oxygen profile variability (Offermann et al., 1981)
and |η| dependence on O profile and complex OH chemistry
(Walterscheid et al., 1994) at the OH altitude region. An-
other possible explanation may be the quenching of molec-
ular lines by collision with perturbed molecules during the
transitions from several vibrational levels, as discussed by
Makhlouf et al. (1995), which can also affect the derived
η parameter. At the same time, varying background wind
conditions may also alter the deduced parameters (which

should not be too different for OH and O2 layers).
It is interesting to note that all the models show the phase

ϕ for OH to be a negative value (or upward phase pro-
gression), with the exception of the model of Walterscheid
and Schubert (1995). Our observed phases also show neg-
ative values (except for one night), corresponding with the
values reported by other investigators. Our derived values
for ϕ also closely match those based on other observations
(Viereck and Deehr, 1989; Reisin and Scheer, 1996). How-
ever, one should note that modeled values show significant
differences with observed ones. Differences in theory and
observation may be due to the horizontal wavelength as-
sumed in the model or the Prandtl number (ratio of kine-
matic viscosity to thermal diffusivity) assumed. The Prandtl
number is important in theoretical calculations and model-
ing, especially when in terms of dissipating waves owing to
molecular viscosity and thermal diffusivity while they prop-
agate in the atmosphere. An error in the Prandtl number
assumption will affect the derived wave parameters (λz , η

etc.), which will in turn mask the actual ones.
The Doppler shifting of wave periods by the mean wind

may also account for the discrepancy (Viereck and Deehr,
1989), creating a distinction between theoretical and ob-
served periodicities. This distinction becomes relevant with
the fact that during July 2002 mesospheric winds exhib-
ited significant variability, as shown in figure 2 of Taori
et al. (2005). Comparative studies between several inves-
tigators had also been discussed by Makhlouf et al. (1995)
and Viereck and Deehr (1989). In particular, Makhlouf et
al. (1995) attempted to account for the η characteristics by
modifying Hine’s model and using a new photochemical
dynamical model (PDM); however, they were still unable to
explain the appearance of the negative phases appropriately.
Hines and Tarasick (1987) found a wide range of η vari-
ability, which is consistent with their theory, and Hines and
Tarasick (1997) subsequently discussed the necessary cor-
rection for thin and thick layer approximations for the cal-
culation of η from airglow emissions due to gravity waves
interaction. Hines et al. (1997) pointed out that OH emis-
sion intensity, which affects the derived η, does not depend
on the oxygen profile and other minor species; this contra-
dicts the theory of Walterscheid et al. (1994), Schubert et
al. (1991), and Offermann et al. (1981), as described in the
previous section. In the light of above hypotheses, a large
range in the observed η values are expected.

Observed vertical wavelength (VW) values for all the
nights of the observation show significant differences be-
tween OH and O2, as given in Fig. 4 where vertical bars in-
dicate the error bar for our study and the ranges of variabil-
ity for other investigators’ studies plotted together. The VW
for OH reveals a larger variability between +99.44±3.8 and
−174.74±16.5 km and that O2 has a range of −19.06±1.5
and −96.35±5.9 km. The mean VW values for OH and
O2 are calculated to be −80.79±15.4 and −49.02±5.7 km,
respectively, which are greater in magnitude than those of
other investigators. Most of the days have negative values
for ϕ and λz , indicating upward propagating gravity waves
and tides—i.e., the downward phase progression. The
values obtained by Reisin and Scheer (1996) and Lopez-
Gonzalez et al. (2005) have also been shown in the plot
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Fig. 4. Deduced vertical wavelengths (VW) for both the OH and O2
emissions as a function of wave periodicity. Also shown are values
obtained by other investigators for a comparison.

for a comparison. It is noteworthy that for all the days
λzOH are generally higher than the λzO2 , which indicates
the dissipation-dominated atmospheric conditions prevail-
ing at that time, which reduce the vertical wavelength of the
waves considerably as they propagate upward. Most prob-
able contributing factors for such a dissipation are molec-
ular viscosity and thermal diffusivity, with the latter acting
as a filter of various periodicity waves at various altitudes
(Hines, 1960). Vadas and Fritts (2005) have shown (equa-
tion (72) in their paper) that kinematic viscosity ∝ λ3

z , con-
cluding that waves with a higher frequency and higher verti-
cal wavelength will travel a higher altitude in a dissipation-
dominated atmosphere and that this dissipating effect also
increases with altitude, which is conspicuous in our results
of decreasing λz with altitude. We have also found possible
cases of evanescence (Tarasick and Hines, 1990) for OH
where λzOH ≥ 100 km. A few cases of evanescence were
also found by Reisin and Scheer (1996). Our values lie well
within the ranges reported by other investigators. Notewor-
thy, the values reported by Reisin and Scheer (1996), who
found a mean VW for OH of approximately −30 km and
one for O2 of approximately −40 km, with ∼40 km vari-
ability, are somewhat in agreement with our values. How-
ever, Lopez-Gonzalez et al. (2005) observed approximately
the same values—around approximately −10 km for OH
and approximately −40 km for molecular oxygen.

Overall, although there has been significant progress
made in our understanding of the effects of gravity waves on
airglow emissions with the use of Krassovsky analysis, very
little data are available on ter-diurnal type of waves. Given
that our data sets focus on the 8-h periodicity wave, our re-
sults are important. The aim of our study is to fill the gaps
of Krassovsky parameters between the semi-diurnal range
and short period (0.5–1 h) waves. The observed variability
in our data surely indicates conspicuous signatures of wave
activities in the mesopause region. Interestingly, a compar-
ison with other observations and model values exhibit no
systematic agreement, thereby illustrating the necessity for
more detailed data with supplementary imagery and wind
information.
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