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Abstract. It is shown that for certain definite conditions of symmetry imposed on the permitting magnetic
field geometry for an isothermal case in Kippenhahn and Schliiter’s (1957) model of a quiescent prominence,
any irrotational velocity field would quickly get converted to rotational.

1. Introduction

So far we have investigated the twin problem of irrotational and rotational velocity fields
in quiescent prominences considering Kippenhahn and Schliiter’s (1957) prominence
model as a typical test case. We showed that in both cases, for the respective velocity
fields assumed, the magnetic field geometry remains unchanged (Pande and Bondal,
1991a, b). In the case of rotational velocity field geometry, however, a physically possible
solution could be obtained for the horizontal plane, i.e., for the x — y plane, but not for
the vertical or the x — z plane. This single possibility enabled us to obtain equal velocity
contours (Pande and Bondal, 1991b). In addition to this, we could derive the mass
density variation along the y-axis. In what follows here, we have adopted the treatment
given earlier in a monograph by Baum et al. (1958) where they have quoted a paper by
Kaplan (1954) and applied it to Kippenhahn and Schliiter’s (1957) model of a quiescent
prominence to derive a condition, wherein one type of motion, i.e., irrotational gets
transformed to rotational.

2. The Equations

The assumptions made here are the same as those in Pande and Bondal (1991a). If we
follow Baum et al. (1958) where they have quoted a paper by Kaplan (1954) who
generalized the known theorem of Thomson in hydrodynamics for the conservation of
circulation in magneto-hydrodynamics, it has been shown that in an inhomogeneous
magnetic field the circulation should increase with time. As is well known, the circulation
(of velocity) is determined by the integral

F=3€vdr=[curlvda, (1)
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along a closed contour moving together with the medium, o is the surface embraced by
this contour. The change in circulation with time is equal to -

dr df} §—dr 4; d dr -
dr dr
§—dr J (f)zjcurlmda=0. 2)
2 dr

o

Now, the equation of motion is

@+(v V)v+~(BxcurlB)+lgradp+g 0. 3)
ot 4np P

If we substitute the value of dv/dz from Equation (3) in Equation (2) and remember the
relation

curl(gpa) = g curla + (gradp) x a, 4

we get, after a number of simple transformations involving the usage of Equation (4),
the equation

B2 p? 1
[gradp x grad (p + —)] + — curl |:— (B-V)B] =0. (5)
8 47 Jij

Equation (5) is a general equation. We consider a two-dimensional case, in the x — z
plane for Kippenhahn and Schliiter’s model and get the following equations, remember-
ing that /dy = 0: the first term on the left-hand side of Equation (5) reduces to

0B, dp B,
ox 0z 4m

whereas the second term becomes

z
x b

Ox

O°B 1 ¢ OB
—ﬁBX = 4 P B

41 ox? 4rm Ox

so that

B B °B. B OB
B, #B B, o
ox>  p Ox Ox

p 0z Ox

We may call Equation (6) an indicial equation for the two-dimensional Kippenhahn and
Schliiter’s model which will decide the nature of motions. To ascertain this, we substitute
the values of dp/dz, 6B /0x, &*B_/0x>, and 0p/dx as given by Kippenhahn and Schliiter’s
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(1957) solution
B, 2H,|

X

B, = B_(00) tanh |:

where H,, is the isothermal scale height given by RT/mg, R being the gas constant; T,
the temperature; m, the molecular weight; and g, the gravitational acceleration on the
Sun’s surface. 0p/0z is equal to — p/H,, and the variation of density p along x is

_BX(0) . ,[BA0) x
P= 70k SeCh[ B 2H0]’ ®

x

where K = m/4nRT .

These solutions for B, and p do not satisfy Equation (6) for the model conditions.
Since, on substitution we obtain —mg/2RTH,B, or —1HZB,_ = 0, which is not true, as
neither H, nor B, can be infinite. Hence, Equation (6) is not satisfied.

From the above it follows that the conservation of potential flows in time, i.e.,
curlv = 0 does not take place. Baum ez al. (1958) have concluded that in such a case
the irrotational motion would quickly get transformed into a rotational one.

3. Results and Discussion

In earlier investigations by us (Pande and Bondal, 1991a, b), we showed that both the
irrotational and rotational motions do not have any effect on the magnetic field geometry
of Kippenhahn and Schliiter’s model of quiescent prominence. Here we have further
shown, that for the same model, under definite conditions of symmetry of magnetic field
geometry how any initially present irrotational (or potential) velocity field can quickly
get transformed to a rotational one. We conclude, therefore, that the existence of
rotational velocity field in Kippenhahn and Schliiter’s model in the x — y plane as
obtained by us (Pande and Bondal, 1991b) is justified by the generalized Thomson’s
circulation theorem also.
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