# ON THE DISTRIBUTION AND ASYMMETRY OF SOLAR ACTIVE PROMINENCES

### V. K. VERMA

Uttar Pradesh State Observatory, Naini Tal-263129, India (E-mail: verma@upso.ernet.in)

(Received 23 June 1999; accepted 5 December 1999)

**Abstract.** The paper presents the results of a study of the distribution and asymmetry of solar active prominences (SAP) for the period 1957-1998 (solar cycles 19-23). The east-west (E-W) distribution study shows that the frequency of SAP events in the  $81-90^{\circ}$  slice (in longitude) near the east and west limbs is up to 10 times greater than in the  $1-10^{\circ}$  slice near the central meridian of the Sun. The north-south (N-S) latitudinal distribution shows that the SAP events are most prolific in the  $11-20^{\circ}$  slice in the northern and southern hemispheres. Further, the E-W asymmetry of SAP events is not significant. The N-S asymmetry of SAP events is significant and it has no relation with the solar maximum year or solar minimum year during solar cycles. Further, the present study also shows that the N-S asymmetry for cycles 19-23 follows and confirms the trend of N-S asymmetry cycles as reported by Verma (1992).

## 1. Introduction

The spatial locations of solar activity phenomena on the solar disc are not uniform. The north-south (N-S) and east-west (E-W) distribution, including asymmetries, of several manifestations of solar activity have been studied earlier by various authors. Several authors have studied the occurrence of solar flares as a function of distance from the central meridian (Waldmeier, 1948; Waldmeier and Bachmann, 1959). The E-W asymmetry of solar phenomena was first studied by Maunder (1907) and later on by Letfus (1960), Letfus and Růžičková-Topolová (1980) and Heras et al. (1990). The literature also indicates that several solar activity phenomena show some form of north-south (N-S) asymmetry (Bell and Glazer, 1959; Bell, 1962; Roy, 1977; Verma, 1987). Bell (1962) finds long-term N-S asymmetry in the sunspot area data. Roy (1977) studied the N-S distribution for flares, sunspots and white-light (WL) flares for a period of more than two solar cycles and found that the asymmetry in the northern hemisphere increases with the importance of solar events. Hansen and Hansen (1975) are of the view that the overall filament configuration and their evolution with time compactly represent the general topology of the photospheric magnetic field and its evolution during the course of solar cycles. Reid (1968) reported N-S asymmetry in the favour of the northern hemisphere for the period 1958–1965. Howard (1974) studied solar magnetic flux data from 1967 to 1973 and found that the northern hemispheric flux exceeds by 7% the southern hemispheric flux. White and Trotter (1977) investigated the asymmetry

Solar Physics **194:** 87–101, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands. of sunspot area and found that on average the solar magnetic field cycle occurs uniformly in the northern and southern hemisphere. Swinson, Koyama, and Saito (1986) also examined relative sunspot numbers and sunspot areas. Their analysis shows that the N-S asymmetry of sunspot numbers favours the northern hemisphere in the period 1947-1984 (solar cycles 18-20). Verma (1987) studied six types of solar phenomena for solar cycles 19, 20, 20, and 21. These include major flares, type II radio bursts, white-light (WL) flares, solar gamma-ray (SGR) bursts, hard X-ray (HXR) bursts, and coronal mass ejection (CME) events. Verma (1987) found that the asymmetries in major flares, type II radio bursts and WL flares favour the northern hemisphere during solar cycles 19 and 20, asymmetries in type II radio bursts, WL bursts, SGR bursts, HXR bursts and CME events favour the southern hemisphere during solar cycle 21. Vizoso and Ballester (1987) studied the N-S asymmetry in sudden disappearances of solar prominences during solar cycles 18-21 and found that the asymmetry curve can be fitted by a sinusoidal function with a period of 11 years. Verma (1992, 1993) studied the N-S asymmetry of various solar activity phenomena and reported cyclic behaviour. E-W and N-S asymmetries for solar phenomena were studied together by Růžičková-Topolová (1974) and Knoška (1985). Joshi (1995) studied E-W and N-S asymmetry of solar prominences,  $H\alpha$ and sunspot groups and concluded that solar flares have E-W and N-S asymmetries while solar prominences have only N-S asymmetry and no E-W asymmetry during the maximum period of solar cycle 22. Recently, Atac and Özgüç (1996) studied the N-S asymmetry in flare index and found a periodic behaviour.

The present paper investigates the E-W/N-S distribution and asymmetry of SAP events for the period 1957–1998 and will also discuss the results obtained in light of earlier works.

## 2. Observational Data and Analysis

The data for SAP events for the period 1957–1998 used in the present study have been downloaded from website created by National Oceanic and Atmospheric Administration, Boulder Colorado, USA. The URL address of this website is as follows: *http://ftp.ngdc.noaa.gov/STP/SOLAR\_DATA/FILAMENTS*. The solar active prominence data included in the present study include limb and disc features and events. In the present study solar active prominence events include events in an active surge region, active prominences, active dark filaments, disappearing filaments, mound prominences, bright surges on limb, eruptive prominences on limb, loops, sprays, arch filament systems, dark surges on disc, bright surges on disc, solar sector boundaries, coronal rains and cap prominences. We have downloaded solar active prominence data from the above website for the period August 1957–1998 in yearwise format. From the yearly data of SAP events we have calculated E-W and N-S distributions and also studied asymmetry.

| Year | 10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90°  | Total |
|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|
| 1957 | 68  | 93  | 106 | 71  | 62  | 40  | 26  | 18  | 800  | 1284  |
| 1958 | 203 | 219 | 212 | 205 | 164 | 111 | 109 | 81  | 1960 | 3264  |
| 1959 | 136 | 146 | 138 | 124 | 118 | 105 | 96  | 71  | 1510 | 2444  |
| 1960 | 107 | 120 | 148 | 101 | 102 | 109 | 55  | 33  | 1195 | 1970  |
| 1961 | 70  | 68  | 73  | 57  | 48  | 37  | 23  | 27  | 542  | 945   |
| 1962 | 57  | 30  | 51  | 52  | 42  | 21  | 24  | 26  | 418  | 721   |
| 1963 | 70  | 72  | 76  | 52  | 51  | 38  | 15  | 11  | 316  | 701   |
| 1964 | 73  | 68  | 63  | 49  | 67  | 20  | 17  | 6   | 462  | 825   |
| 1965 | 132 | 118 | 115 | 77  | 64  | 40  | 22  | 31  | 607  | 1206  |
| 1966 | 253 | 283 | 288 | 221 | 190 | 180 | 98  | 59  | 1238 | 2810  |
| 1967 | 257 | 237 | 266 | 271 | 195 | 133 | 120 | 82  | 1942 | 3503  |
| 1968 | 237 | 198 | 190 | 163 | 168 | 110 | 76  | 67  | 1900 | 3109  |
| 1969 | 84  | 64  | 49  | 60  | 56  | 27  | 19  | 27  | 458  | 844   |
| 1970 | 136 | 126 | 98  | 84  | 66  | 55  | 46  | 52  | 1239 | 1902  |
| 1971 | 174 | 188 | 175 | 124 | 81  | 53  | 42  | 43  | 1800 | 2680  |
| 1972 | 352 | 277 | 230 | 234 | 171 | 123 | 80  | 56  | 2107 | 3630  |
| 1973 | 180 | 176 | 155 | 152 | 113 | 84  | 58  | 68  | 1122 | 2108  |
| 1974 | 50  | 60  | 39  | 40  | 34  | 32  | 31  | 9   | 162  | 457   |
| 1975 | 76  | 60  | 65  | 64  | 51  | 36  | 22  | 12  | 795  | 1181  |
| 1976 | 52  | 55  | 54  | 39  | 39  | 44  | 19  | 13  | 589  | 904   |
| 1977 | 31  | 31  | 31  | 12  | 23  | 20  | 19  | 6   | 486  | 659   |
| 1978 | 30  | 41  | 44  | 53  | 30  | 32  | 13  | 11  | 887  | 1141  |
| 1979 | 52  | 66  | 46  | 42  | 38  | 40  | 23  | 17  | 697  | 1021  |
| 1980 | 82  | 70  | 52  | 53  | 30  | 25  | 14  | 3   | 844  | 1173  |
| 1981 | 59  | 56  | 43  | 53  | 32  | 29  | 18  | 3   | 664  | 957   |
| 1982 | 30  | 53  | 34  | 47  | 17  | 21  | 11  | 4   | 543  | 760   |
| 1983 | 39  | 35  | 30  | 30  | 20  | 11  | 8   | 3   | 376  | 552   |
| 1984 | 57  | 63  | 58  | 47  | 41  | 28  | 18  | 10  | 492  | 814   |
| 1985 | 54  | 51  | 56  | 33  | 33  | 25  | 21  | 6   | 580  | 859   |
| 1986 | 169 | 159 | 165 | 130 | 142 | 130 | 93  | 43  | 455  | 1486  |
| 1987 | 279 | 326 | 261 | 265 | 208 | 184 | 150 | 109 | 540  | 2322  |
| 1988 | 494 | 453 | 449 | 415 | 368 | 293 | 197 | 139 | 1220 | 4028  |
| 1989 | 451 | 513 | 490 | 468 | 409 | 334 | 260 | 199 | 2166 | 5290  |
| 1990 | 619 | 638 | 610 | 610 | 531 | 471 | 382 | 255 | 1144 | 5260  |
| 1991 | 619 | 582 | 613 | 573 | 542 | 523 | 414 | 251 | 1232 | 5349  |
| 1992 | 537 | 500 | 545 | 549 | 487 | 408 | 343 | 218 | 840  | 4427  |
| 1993 | 525 | 507 | 485 | 451 | 500 | 430 | 355 | 223 | 1057 | 4533  |
| 1994 | 384 | 410 | 366 | 336 | 323 | 263 | 199 | 131 | 404  | 2816  |
| 1995 | 322 | 313 | 249 | 248 | 240 | 180 | 132 | 73  | 411  | 2168  |
| 1996 | 172 | 133 | 140 | 132 | 94  | 56  | 48  | 26  | 178  | 979   |
| 1997 | 189 | 195 | 207 | 162 | 148 | 125 | 84  | 40  | 140  | 1290  |
| 1998 | 85  | 77  | 56  | 55  | 61  | 44  | 36  | 9   | 68   | 491   |

 TABLE I

 Yearly numbers of SAP events in the eastern hemisphere

| TA   | ABLE II |  |
|------|---------|--|
| COAD |         |  |

Yearly numbers of SAP events in the western hemisphere

| Year | 10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90°  | Total |
|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|
| 1957 | 83  | 79  | 71  | 62  | 70  | 63  | 35  | 23  | 885  | 1371  |
| 1958 | 181 | 147 | 151 | 172 | 159 | 127 | 69  | 52  | 1952 | 3010  |
| 1959 | 153 | 149 | 95  | 128 | 120 | 91  | 58  | 60  | 1402 | 2256  |
| 1960 | 116 | 110 | 105 | 89  | 110 | 83  | 69  | 35  | 1181 | 1898  |
| 1961 | 62  | 67  | 58  | 64  | 40  | 41  | 32  | 25  | 573  | 962   |
| 1962 | 54  | 53  | 55  | 37  | 42  | 25  | 16  | 18  | 416  | 716   |
| 1963 | 79  | 74  | 80  | 36  | 35  | 24  | 21  | 13  | 378  | 740   |
| 1964 | 60  | 62  | 66  | 77  | 49  | 45  | 21  | 14  | 502  | 896   |
| 1965 | 89  | 104 | 120 | 97  | 70  | 39  | 22  | 15  | 492  | 1048  |
| 1966 | 274 | 250 | 256 | 221 | 171 | 129 | 75  | 61  | 1250 | 2687  |
| 1967 | 291 | 213 | 255 | 221 | 201 | 140 | 124 | 148 | 2144 | 3737  |
| 1968 | 217 | 237 | 198 | 196 | 159 | 97  | 69  | 61  | 1998 | 3232  |
| 1969 | 60  | 61  | 44  | 54  | 55  | 31  | 17  | 27  | 471  | 820   |
| 1970 | 116 | 93  | 105 | 77  | 64  | 46  | 42  | 37  | 1312 | 1892  |
| 1971 | 162 | 120 | 155 | 90  | 72  | 58  | 30  | 44  | 1542 | 2273  |
| 1972 | 304 | 250 | 217 | 215 | 170 | 126 | 79  | 54  | 1937 | 3352  |
| 1973 | 187 | 176 | 158 | 125 | 141 | 80  | 66  | 36  | 1231 | 2200  |
| 1974 | 39  | 53  | 48  | 54  | 46  | 47  | 28  | 16  | 215  | 546   |
| 1975 | 99  | 99  | 82  | 102 | 70  | 63  | 29  | 19  | 852  | 1415  |
| 1976 | 56  | 38  | 51  | 49  | 31  | 26  | 25  | 3   | 570  | 849   |
| 1977 | 29  | 23  | 31  | 31  | 15  | 18  | 10  | 2   | 407  | 566   |
| 1978 | 35  | 58  | 55  | 49  | 34  | 27  | 15  | 16  | 813  | 1102  |
| 1979 | 45  | 55  | 40  | 51  | 51  | 27  | 23  | 11  | 595  | 898   |
| 1980 | 93  | 53  | 69  | 45  | 46  | 41  | 21  | 11  | 651  | 1030  |
| 1981 | 55  | 44  | 36  | 36  | 20  | 13  | 5   | 5   | 478  | 692   |
| 1982 | 32  | 24  | 28  | 24  | 15  | 13  | 6   | 6   | 497  | 645   |
| 1983 | 31  | 28  | 29  | 27  | 20  | 17  | 13  | 4   | 375  | 544   |
| 1984 | 58  | 51  | 61  | 47  | 29  | 19  | 15  | 10  | 475  | 765   |
| 1985 | 45  | 46  | 40  | 48  | 37  | 25  | 8   | 1   | 566  | 816   |
| 1986 | 195 | 188 | 161 | 145 | 125 | 114 | 103 | 64  | 497  | 1592  |
| 1987 | 312 | 285 | 285 | 198 | 162 | 178 | 103 | 82  | 505  | 2110  |
| 1988 | 448 | 485 | 438 | 401 | 379 | 316 | 185 | 161 | 1344 | 4157  |
| 1989 | 554 | 469 | 469 | 489 | 397 | 361 | 279 | 216 | 2244 | 5478  |
| 1990 | 795 | 725 | 724 | 630 | 566 | 497 | 360 | 297 | 1620 | 6214  |
| 1991 | 727 | 700 | 676 | 637 | 594 | 506 | 450 | 316 | 1399 | 6005  |
| 1992 | 687 | 690 | 653 | 600 | 557 | 568 | 430 | 269 | 980  | 5434  |
| 1993 | 599 | 608 | 552 | 555 | 496 | 442 | 320 | 217 | 1050 | 4839  |
| 1994 | 427 | 387 | 383 | 382 | 365 | 305 | 244 | 146 | 587  | 3226  |
| 1995 | 285 | 221 | 231 | 222 | 195 | 159 | 80  | 51  | 406  | 1850  |
| 1996 | 206 | 170 | 163 | 133 | 119 | 86  | 75  | 28  | 257  | 1237  |
| 1997 | 157 | 180 | 177 | 152 | 129 | 108 | 54  | 35  | 201  | 1193  |
| 1998 | 60  | 86  | 68  | 59  | 62  | 45  | 30  | 19  | 133  | 562   |



Figure 1. Plot of number of solar active prominences versus east-west heliographic longitudes in degrees.

### 2.1. E-W DISTRIBUTION AND ASYMMETRY OF SOLAR ACTIVE PROMINENCES

The data downloaded from NOAA, USA have been used to study the E-W distribution of solar active prominence data for the period 1957–1998. In Tables I and II we have shown the yearly distribution of SAP events at longitudinal intervals of 10° from the central meridian towards the east and west limbs, respectively, during 1957–1998.

To understand Tables I and II more clearly we have plotted the number of active prominences versus heliographic longitude in degrees (Figure 1). In Figure 1 the minus (–) sign in heliographic longitude indicates east and the plus (+) or no sign in heliographic longitude indicates west. Further, in Figure 1 the  $-90^{\circ}$  represents E90 and 90° represents W90. The 0° represents the central meridian of the Sun. From Tables I–II we have calculated SAP event data for solar cycles 19 (1955–1964), 20 (1965–1976), 21 (1977–1986), 22 (1987–1996) and 23 (1997–1998) at an interval of 10°. From Figure 1 it is clear that number of SAP events decreases from central meridian towards the east or west limb of the Sun. From Tables I and II and Figure 1 it is clear that the frequency of SAP events keeps decreasing in 10° intervals from 1° up to 80°. The SAP frequency again increases between  $81^{\circ}-90^{\circ}$  longitude at the east and west limbs up to 10-12 times more than in the  $1^{\circ}-10^{\circ}$  slices at the central meridian of the Sun.

The E-W asymmetry indices of SAP events are calculated from the formula



Figure 2. Plot of E-W asymmetry indices for SAP events versus year (1957-1998).

$$A_{ew} = \frac{N_e - N_w}{N_e + N_w} \; .$$

Here,  $A_{ew}$  is the E–W asymmetry, and  $N_e$  and  $N_w$  are the yearly numbers of SAP events in the eastern or western hemisphere of the Sun, respectively. Thus, if  $A_{ew} > 0$ , the activity in the eastern hemisphere dominates, and if  $A_{ew} < 0$ , the reverse is true. We have calculated the E-W asymmetries for the SAP events for the period 1957–1998. To know the statistical significance of the E-W asymmetry index we applied the  $\chi^2$  test of population variance of statistical significance. The calculated value of the Z is 0.103 at 0.01 significance level which is much less than tabulated value of the E-W asymmetry of SAP data is not significant. In Figure 2 we have plotted the annual indices of E-W asymmetry versus year for SAP events.

From Figure 2 it is clear that the E-W asymmetry does not show any significant value or systematic behaviour and also that the E-W asymmetry does not show any relation with solar maximum year or minimum year during solar cycles.

#### 2.2. N-S DISTRIBUTION AND ASYMMETRY OF SOLAR ACTIVE PROMINENCES

The solar active prominences data obtained from NOAA, USA were analysed to understand the N-S distribution and N-S asymmetry. In Tables III and IV we show the yearly number of SAP events at intervals of 10° (in latitude) in the northern and southern hemisphere for the period 1957–1998, respectively.

Using Tables III and IV we have calculated the number of SAP events in intervals of  $10^{\circ}$  (in latitude) for the northern and southern hemispheres for solar

| Year | 10°  | 20°  | 30°  | 40° | 50° | 60° | 70° | 80° | 90° | Total |
|------|------|------|------|-----|-----|-----|-----|-----|-----|-------|
| 1957 | 185  | 450  | 414  | 176 | 84  | 36  | 21  | 17  | 2   | 1385  |
| 1958 | 541  | 886  | 861  | 479 | 269 | 137 | 60  | 56  | 13  | 3302  |
| 1959 | 785  | 1204 | 837  | 262 | 81  | 15  | 10  | 24  | 20  | 3238  |
| 1960 | 596  | 846  | 695  | 248 | 64  | 21  | 16  | 3   | 2   | 2491  |
| 1961 | 450  | 447  | 175  | 55  | 15  | 9   | 5   | 8   | 9   | 1173  |
| 1962 | 432  | 306  | 98   | 52  | 15  | 20  | 14  | 6   | 9   | 952   |
| 1963 | 376  | 507  | 103  | 54  | 25  | 6   | 12  | 7   | 11  | 1101  |
| 1964 | 319  | 195  | 327  | 179 | 98  | 51  | 30  | 33  | 34  | 1266  |
| 1965 | 197  | 284  | 953  | 222 | 111 | 35  | 15  | 16  | 11  | 1844  |
| 1966 | 264  | 1283 | 2255 | 855 | 140 | 82  | 31  | 10  | 5   | 4925  |
| 1967 | 346  | 1963 | 1752 | 431 | 115 | 46  | 49  | 5   | 2   | 4709  |
| 1968 | 840  | 1819 | 789  | 166 | 69  | 16  | 14  | 7   | 5   | 3725  |
| 1969 | 212  | 626  | 292  | 96  | 17  | 4   | 0   | 0   | 1   | 1248  |
| 1970 | 508  | 1160 | 464  | 87  | 24  | 11  | 9   | 3   | 1   | 2267  |
| 1971 | 893  | 966  | 262  | 70  | 37  | 15  | 9   | 7   | 4   | 2263  |
| 1972 | 1315 | 1179 | 191  | 75  | 36  | 31  | 30  | 22  | 10  | 2889  |
| 1973 | 769  | 940  | 145  | 50  | 41  | 28  | 21  | 35  | 29  | 2058  |
| 1974 | 201  | 149  | 4    | 3   | 1   | 0   | 0   | 0   | 0   | 358   |
| 1975 | 652  | 225  | 110  | 106 | 66  | 39  | 65  | 77  | 72  | 1412  |
| 1976 | 242  | 117  | 103  | 72  | 61  | 42  | 62  | 69  | 96  | 864   |
| 1977 | 79   | 175  | 185  | 115 | 43  | 20  | 35  | 32  | 38  | 722   |
| 1978 | 74   | 569  | 336  | 157 | 73  | 42  | 35  | 36  | 29  | 1351  |
| 1979 | 212  | 377  | 266  | 104 | 39  | 14  | 9   | 16  | 9   | 1046  |
| 1980 | 207  | 481  | 254  | 80  | 22  | 17  | 8   | 12  | 11  | 1092  |
| 1981 | 292  | 386  | 100  | 30  | 10  | 5   | 1   | 2   | 4   | 830   |
| 1982 | 258  | 315  | 110  | 32  | 14  | 9   | 10  | 8   | 17  | 773   |
| 1983 | 129  | 131  | 36   | 14  | 10  | 12  | 10  | 14  | 13  | 369   |
| 1984 | 207  | 216  | 81   | 46  | 11  | 10  | 12  | 15  | 8   | 606   |
| 1985 | 329  | 102  | 48   | 38  | 36  | 37  | 52  | 52  | 54  | 748   |
| 1986 | 836  | 208  | 357  | 141 | 78  | 21  | 26  | 33  | 43  | 1743  |
| 1987 | 216  | 339  | 605  | 329 | 113 | 43  | 11  | 14  | 26  | 1696  |
| 1988 | 77   | 1604 | 1751 | 493 | 126 | 63  | 35  | 37  | 47  | 4233  |
| 1989 | 397  | 1908 | 1648 | 649 | 149 | 106 | 100 | 69  | 82  | 5523  |
| 1990 | 875  | 2063 | 1065 | 482 | 102 | 30  | 20  | 5   | 5   | 5453  |
| 1991 | 1225 | 1402 | 787  | 328 | 53  | 10  | 2   | 1   | 1   | 4212  |
| 1992 | 1437 | 1749 | 435  | 80  | 32  | 7   | 0   | 1   | 5   | 3746  |
| 1993 | 2310 | 1787 | 224  | 43  | 28  | 29  | 33  | 53  | 35  | 4542  |
| 1994 | 1558 | 912  | 95   | 32  | 14  | 5   | 16  | 7   | 11  | 2650  |
| 1995 | 1140 | 431  | 49   | 31  | 29  | 19  | 38  | 39  | 64  | 1840  |
| 1996 | 611  | 194  | 91   | 41  | 31  | 15  | 11  | 8   | 12  | 1014  |
| 1997 | 194  | 398  | 657  | 173 | 27  | 6   | 2   | 0   | 4   | 1461  |
| 1998 | 8    | 105  | 173  | 33  | 8   | 0   | 0   | 0   | 1   | 328   |

TABLE III Yearly numbers of SAP events in the northern hemisphere

| Year | 10°  | 20°  | 30°  | 40° | 50° | 60° | 70° | 80° | 90° | Total |
|------|------|------|------|-----|-----|-----|-----|-----|-----|-------|
| 1957 | 156  | 357  | 432  | 220 | 91  | 24  | 17  | 7   | 3   | 1307  |
| 1958 | 670  | 1181 | 673  | 240 | 140 | 56  | 7   | 16  | 15  | 2998  |
| 1959 | 441  | 516  | 263  | 114 | 84  | 16  | 13  | 0   | 0   | 1447  |
| 1960 | 472  | 550  | 229  | 48  | 26  | 22  | 10  | 3   | 1   | 1361  |
| 1961 | 331  | 218  | 90   | 26  | 10  | 14  | 6   | 3   | 5   | 703   |
| 1962 | 187  | 184  | 53   | 23  | 7   | 8   | 5   | 5   | 1   | 473   |
| 1963 | 125  | 158  | 20   | 13  | 11  | 4   | 1   | 2   | 0   | 334   |
| 1964 | 235  | 64   | 43   | 27  | 29  | 17  | 6   | 8   | 16  | 445   |
| 1965 | 114  | 79   | 91   | 60  | 20  | 19  | 12  | 14  | 6   | 415   |
| 1966 | 25   | 171  | 298  | 51  | 21  | 9   | 10  | 7   | 5   | 597   |
| 1967 | 130  | 872  | 1113 | 240 | 100 | 75  | 10  | 6   | 4   | 2550  |
| 1968 | 381  | 1177 | 713  | 217 | 67  | 44  | 10  | 2   | 4   | 2615  |
| 1969 | 86   | 196  | 82   | 44  | 12  | 1   | 0   | 0   | 0   | 421   |
| 1970 | 636  | 656  | 178  | 39  | 10  | 5   | 1   | 0   | 2   | 1527  |
| 1971 | 1214 | 1124 | 231  | 53  | 33  | 15  | 7   | 3   | 10  | 2690  |
| 1972 | 1819 | 1695 | 379  | 92  | 40  | 33  | 18  | 8   | 7   | 4091  |
| 1973 | 856  | 983  | 207  | 50  | 40  | 29  | 23  | 19  | 14  | 2221  |
| 1974 | 150  | 410  | 60   | 14  | 6   | 0   | 0   | 0   | 0   | 640   |
| 1975 | 437  | 299  | 72   | 78  | 67  | 69  | 54  | 60  | 48  | 1184  |
| 1976 | 260  | 149  | 136  | 57  | 59  | 40  | 50  | 70  | 65  | 886   |
| 1977 | 35   | 79   | 188  | 50  | 45  | 27  | 23  | 29  | 29  | 505   |
| 1978 | 44   | 223  | 312  | 149 | 44  | 30  | 31  | 31  | 33  | 897   |
| 1979 | 90   | 354  | 260  | 87  | 28  | 13  | 17  | 12  | 15  | 876   |
| 1980 | 212  | 412  | 334  | 86  | 37  | 5   | 3   | 10  | 17  | 1116  |
| 1981 | 268  | 361  | 137  | 21  | 16  | 3   | 5   | 0   | 0   | 813   |
| 1982 | 225  | 253  | 72   | 37  | 12  | 8   | 5   | 3   | 12  | 627   |
| 1983 | 267  | 270  | 103  | 37  | 12  | 12  | 4   | 11  | 13  | 729   |
| 1984 | 355  | 383  | 83   | 32  | 25  | 21  | 22  | 33  | 22  | 976   |
| 1985 | 243  | 252  | 109  | 54  | 51  | 41  | 53  | 62  | 60  | 925   |
| 1986 | 578  | 226  | 156  | 127 | 79  | 24  | 20  | 24  | 35  | 1269  |
| 1987 | 133  | 307  | 1432 | 711 | 116 | 37  | 4   | 9   | 11  | 2760  |
| 1988 | 99   | 1369 | 1535 | 625 | 158 | 81  | 40  | 25  | 29  | 3961  |
| 1989 | 355  | 2114 | 1389 | 384 | 125 | 66  | 38  | 31  | 40  | 4896  |
| 1990 | 1002 | 2142 | 995  | 407 | 111 | 29  | 14  | 1   | 4   | 5362  |
| 1991 | 1359 | 2411 | 1382 | 243 | 43  | 10  | 1   | 2   | 1   | 6432  |
| 1992 | 1796 | 2490 | 884  | 181 | 35  | 3   | 1   | 1   | 2   | 5393  |
| 1993 | 1670 | 1993 | 461  | 66  | 37  | 32  | 44  | 37  | 55  | 4395  |
| 1994 | 1288 | 1617 | 91   | 35  | 13  | 7   | 9   | 12  | 9   | 3081  |
| 1995 | 723  | 1113 | 121  | 42  | 30  | 17  | 16  | 33  | 23  | 2118  |
| 1996 | 653  | 323  | 110  | 40  | 25  | 11  | 9   | 16  | 12  | 1199  |
| 1997 | 92   | 178  | 581  | 151 | 32  | 3   | 0   | 3   | 1   | 1041  |
| 1998 | 6    | 184  | 379  | 96  | 43  | 15  | 0   | 2   | 1   | 726   |

TABLE IV



Figure 3. Plot of the number of solar active prominences versus heliographic latitude in degrees.

cycles 19, 20, 21, 22, and 23. In Figure 3 we have plotted the number of active prominences versus heliographic latitude in degrees for solar cycles 19, 20, 21, 22, and 23.

In Figure 3, the  $0^{\circ}$  latitude represents the equator of the Sun. From Figure 3 it is clear that prominence activity is maximum between  $11-20^{\circ}$  latitude in each hemisphere. The number of SAP events in the northern and southern hemispheres for the years 1957–1998 are shown in Tables III–IV. We have calculated N-S asymmetry by using the formula

$$A_{ns} = \frac{N_n - N_s}{N_n + N_s} \, .$$

Here,  $A_{ns}$  is a N-S asymmetry,  $N_n$  is the yearly number of SAP events in the northern hemisphere and  $N_s$  is the yearly number of SAP events in the southern hemisphere. Thus, if  $A_{ns} > 0$ , the activity in the northern hemisphere dominates, and if  $A_{ns} < 0$ , the reverse is true. We have calculated the N-S asymmetries with the above formula for the period 1957–1998 and plotted the indices of the N-S asymmetry versus year in Figure 4. To know the statistical significance of N-S asymmetry index we applied the Chi-Square test of population variance of statistical significance. The calculated value of the Z is 19.81 at 0.01 significance level (2.57). Thus, we conclude that the calculated value of the N-S asymmetry of SAP data is highly significant.





The N-S asymmetry of SAP events is shown by the diamond symbol in Figure 4. In Figure 4 we have also plotted the N-S asymmetry in the sudden disappearance of solar prominences (SDP) for the period 1945–1985 (Vizoso and Ballester, 1987) by the plus symbol. Figure 4 shows that there is a significant of variation N-S asymmetry indices from northern hemisphere to southern hemisphere. To know whether N-S asymmetry indices have some cyclic behaviour with solar cycles of the Sun or not we have calculated the N-S asymmetry for solar cycles number 18–23 for SAP events and SDP events for the period including solar cycles number 18–21. In Figure 5 we have plotted indices of N-S asymmetry versus solar cycle number for the period covering solar cycles 18 to 23.





## 3. Results and Discussions

The SAP events data for the period 1957–1998 are analysed and the results obtained are as follows:

(1) From the central meridian of the Sun, the frequency of SAP events decreases in 10° intervals from 01° up to 80°. The SAP frequency again increases between  $81^{\circ}-90^{\circ}$  longitude near the east and west limbs by up to 10-12 times more than in the  $01^{\circ}-10^{\circ}$  slice near the central meridian of the Sun.

(2) The E-W asymmetry is not significant for the period 1957–1998.

(3) The SAP events are most numerous between latitudes  $11^{\circ}-20^{\circ}$  and are mostly observed within  $\pm 30^{\circ}$  latitudes for solar cycles 19–23.

(4) The N-S asymmetry exists for SAP events during 1957–1998 and follows the trends of N-S asymmetry in sudden disappearing of prominences (Vizoso and Ballester, 1987).

(5) The N-S asymmetry for SAP events also shows a cyclic variation with solar cycles.

From Tables I–II and Figure 1, it is clear that the frequency of a SAP events shows decreasing tendency from central meridian towards  $80^{\circ}$  near both limbs (east/west). It is also found that the yearly frequency of SAP events between 81 –90° is almost 70% of the total SAP events occurring in the eastern or western hemisphere. The reason for this type of distribution is not clear, but may be due to the following:

(1) Up to 50% of SAP events observed between  $81^{\circ}-90^{\circ}$  may have been occurring behind the east and west limbs in the slice between  $81^{\circ}-90^{\circ}$  which were observed through a coronagraph or prominence monitor leading to an increase in the yearly number of SAP events. Further, the large number of SAP events above the limb can originate from places located far from the near limb slices ( $81^{\circ}-90^{\circ}$  and  $91^{\circ}-100^{\circ}$ ). These SAP significantly increase the number of SAP attributed to the slice  $81^{\circ}-90^{\circ}$ .

(2) The number of SAP events which originate on the visible part of the disk in the slices located rather close to the limb, e.g., in slices  $61^{\circ}-70^{\circ}$  or  $71^{\circ}-80^{\circ}$ , cannot be recorded with the H $\alpha$  filters of a fixed 0.5 Å bandpass usually used for the patrol observations. Further, these SAPs, which erupt along a direction inclined towards the limb from the local vertical line, can be observed in emission above the limb, and if reported will increase the population of the slice  $81^{\circ}-90^{\circ}$ .

(3) The number of SAPs observed in the central part of the disc, originating in the slices  $01^{\circ}-10^{\circ}$  – up to  $41^{\circ}-50^{\circ}$  or so and subsequently reported may be underestimated. This will be true for a large number of SAPs which propagate upwards with large velocity from places of origin in more or less a vertical direction and are observed mainly through H $\alpha$  filters with a fixed 0.5 Å bandpass, resulting in large line-of-sight velocity components usually displayed by fast erupting prominence which makes their observation impossible.

Thus, in the light of above results the longitudinal distribution of SAP events may be treated as tentative and further investigations related to the longitudinal distribution of SAP events should be carried out with data obtained through an instruments based on tunable H $\alpha$  filters. As shown in Figure 2 we have also studied the E-W asymmetry of SAP events for the period 1957–1998. The maximum E-W asymmetry index for this period was +0.12 and the minimum E-W asymmetry index was -0.12 and mean E-W asymmetry index was 0.04 which is not a significant value. We can also see from Figure 2 that E-W asymmetry is not following the solar cycle period of 11 years. Earlier Knoška (1985) studied the E-W asymmetry of the solar flare index for the period 1937–1976 and found that E-W asymmetry of flare activity was very small and oscillates about zero with positive number. Knoška

98

(1985) also compared the time variation of E-W asymmetry of flare activity with the phase of the 11 year cycle and did not find any relationship.

From Tables III-IV and Figure 3 it is clear that 11-20° latitudes in the northern and southern hemispheres are most prolific for SAP activity for the period of solar cycles 19-22 while solar cycle 23 (1997-1998) shows that the 21-30° latitude is most prolific for SAP activity. From Table II we have also calculated N-S asymmetry for the 1957–1998 and plotted it by a diamond symbol in Figure 4 along with SDP with a plus symbol. To understand indices of N-S asymmetry in a better way we have calculated the mean value of N-S asymmetry for the solar cycle. In Figure 5 we have plotted the index of N-S asymmetry versus solar cycle number for 18–23. From Figure 5 it is clear that indices of N-S asymmetry of SDP events favour the northern hemisphere for solar cycles 18, 19, and 20 and shift to southern hemisphere during solar cycle 21. Figure 5 also shows that SAP events favour northern hemisphere during cycles 19 and 20 and favouring southern hemisphere during cycles 21, 22, and 23. Further, there is a controversy about the N-S asymmetry of solar cycle 21. According to Verma (1987) and Dinulescu and Dinulescu (1990) the N-S asymmetry favour southern hemisphere during solar cycle 21 while according to Bai (1990) the N-S asymmetry is zero. The N-S asymmetry of solar cycle 21 is an important parameter because according to Verma (1992, 1993) the N-S asymmetry was favouring the northern hemisphere till solar cycle 20 and shifted to southern hemisphere during cycle 21. We conclude from Verma (1992) and also from this analysis that the N-S asymmetry will favour the southern hemisphere from solar cycles 21–24 and shift to the northern hemisphere from solar cycle 25. The present study based on SAP and SDP data show that during solar cycle 21, N-S asymmetry of SAP data is  $A_{ns} = -0.01$  and N-S asymmetry of SDP data is  $A_{ns} = -0.07$ . Recently Ataç and Özgüç (1996) studied the N-S asymmetry in solar flare index and found that the dominance of flare activity in the southern hemisphere will continue during solar cycle 22 and also, dominance will gradually increase during solar cycle 23. The present study and the study of Atac and Özgüc (1996), confirm the predictions of Verma (1992). According to Verma (1992), the N-S asymmetry of solar active phenomena may be southern dominated during solar cycles 22, 23, and 24, and will shift to the northern hemisphere during solar cycle 25. Further, the explanation of the N-S asymmetry period is not available in the literature and may be due to asymmetric internal structure of the Sun.

### 4. Conclusions

In the above sections we have carried out a detailed study about the distribution and asymmetry of SAP events for the period 1957–1998 (solar cycles 19–23). From the present study we draw the following conclusions:

(1) The east-west (E-W) distribution study shows that the frequency of SAP events in the  $81-90^{\circ}$  slice (in longitude) near the east and west limbs is up to 10 times greater than in the  $01^{\circ}-10^{\circ}$  slice near the central meridian of the Sun.

(2) The latitudinal distribution study shows that SAP events are most numerous at latitudes  $11-20^{\circ}$  in the northern and southern hemispheres and SAP activities are mostly limited to  $\pm 30^{\circ}$  in latitude.

(3) The E-W asymmetry is not of significant value and it oscillates about zero with mean value 0.04.

(4) The N-S asymmetry of SAP events has a significant value. The maximum value of  $A_{ns}$  in northern hemisphere is 0.78 and the maximum value of  $A_{ns}$  favouring the southern hemisphere is -0.38. Further, the N-S asymmetry for SAP events has no relation with a solar maximum year or solar minimum year during solar cycles.

(5) The N-S asymmetry for solar cycles 19-23 follows and confirms the trends reported by Verma (1992).

### Acknowledgements

The author is thankful to the Solar Geophysical Data Center, NOAA, Boulder, Colorado, U.S.A. for allowing us to download the Solar Filaments Listing, used in the present study. The author is also extremely thankful to the referee of the paper, Prof. B. Rompolt, Poland, for his useful suggestions and comments.

#### References

Ataç, T. and Özgüç, A.: 1996, Solar Phys. 166, 201. Bell, B.: 1962, Smithsonian Contr. Astrophys 5, 187. Bell, B. and Glazer, H.: 1959, Smithsonian Contr. Astrophys. 3, 25. Dinulescu, S. and Dinulescu, V.: 1991, Romanian Astron. J. 1, 63. Hansen, R. and Hansen, S.: 1975, Solar Phys. 44, 225. Heras, A. M., Sanahuja, B., Shea, M. A., and Smart, D. F.: 1990, Solar Phys. 126, 371. Howard, R.: 1974, Solar Phys. 38, 59. Joshi, A.: 1995, Solar Phys. 157, 315. Knoška, S.: 1985, Contrib. Astron. Obs. Skalnaté Pleso 13, 217. Letfus, V.: 1960, Bull. Astron. Inst. Czech. 11, 31. Letfus, V. and Růžičková-Topolová, B.: 1980, Bull. Astron. Inst. Czech. 31, 232. Maunder, A. S. D.: 1907, Monthly Notices Royal Astron. Soc. 67, 451. Reid, J. H.: 1968, Solar Phys. 5, 207. Roy, J. R.: 1977, Solar Phys. 52, 53. Růžičková-Topolová, B.: 1974, Bull. Astron. Inst. Czech. 25, 345. Smith, J. H. and Smith, E. V. P.: 1965, Solar Flares, The Macmillan Co., New York, p. 49. Swinson, D. B., Koyama, H., and Saito, T.: 1986, Solar Phys. 106, 35. Verma, V. K.: 1987, Solar Phys. 114, 185. Verma, V. K.: 1992 Astron. Soc. Pacific Conf. Ser. 27, 429.

### 100

Verma, V. K.: 1993, *Astrophys. J.* 403, 797.
Vizoso, G. and Ballester, J. L.: 1987, *Solar Phys.* 112, 317.
Waldmeier, M.: 1948, *Astron. Mitt. Eidgenoss. Sternwarte, Zürich* 153.
Waldmeier, M. and Bachmann, H.: 1959, *Z. Astrophys.* 47, 81.
White, O. R. and Trotter, D. E.: 1977, *Astrophys. J. Supp.* 33, 391.