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Abstract. We provide a detailed introduction to the main problems arising
when analyzing light curves in asteroseismology. Attention is first paid to
the signal model delivered by the pulsating stars and to the noise sources
corrupting this model in photometric observations. The main pitfalls and
ambiguities occurring in Fourier analysis are summarized and illustrated.
Some classical, Least Squares (LS) based methods for spectrum analysis are
analyzed and commented on from the point of view of ill-posed problems.
The insight that can be gained from such analyses is discussed.
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1. Introduction

Pulsating stars form a subclass of variable stars. The luminosity variations exhibited by
these stars depend upon their mass, structure and chemical composition. The purpose of
asteroseismolgy is to infer physical parameters for the stars (internal structure, effective
temperature, magnetic field, gravity, mass, inclination angle, . . . ) by analyzing their
pulsation patterns. The overall strategy can be divided in to two main parts. In the
first part, the data are collected under the form of variability light curves. After a
series of operations on these data (reduction, noise analysis, spectrum estimation,
see S. Joshi’s paper in this issue for examples of roAp stars), the eigenfrequencies
are determined, leading to the eigenmodes of pulsation. The second part deals with
designing numerical models of stars (and of the corresponding pulsation patterns) by
perturbing fluid equations (see e.g., Finley et al. (1997) for atmosphere’s models). The
better the agreement with the data, the better the model (see e.g., Castanheira et al.
(2004) for a detailed example of a White Dwarf ).

The present paper introduces in detail the first part of the above strategy: we present
an overview of the techniques and problems related to the determination of the pul-
sation’s frequencies. In section 2, attention is first paid to the mathematical model for
signals obtained from pulsating stars; important pitfalls and ambiguities occurring in
Fourier analysis are illustrated. We then turn to the noise sources corrupting this model
in photometric observations. The third section comments and analyzes two classical
methods (CLEAN, SPD) for Fourier Transform (FT) analysis. General Least Squares
(LS) based methods are further analyzed and commented from the point of view of
ill-posed problems in section 4. We discuss how this point of view can improve the
analysis of light curves and lead to different, sometimes more appropriated analysis
methods. Section 5 draws some conclusions.
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2. Light curves in asteroseismology

2.1 Signal model, Fourier analysis and data gaps

Many pulsating stars exhibit small amplitude variability (e.g., sun, rapidly oscillating
A peculiar (roAp) stars, white dwarfs, . . . ). Small amplitude oscillations of spherical
objects can be described in terms of spherical harmonics. For a particular mode, the
oscillations of scalar quantities such as radial velocity or luminosity can be written in
the form: m(t) = m0 + a0 cos(2πν0t − φ0), where m(t) and m0 are respectively the
instantaneous and mean scalar quantity (magnitude in the following), a0, ν0 and φ0

are respectively the amplitude, frequency and phase of the mode. Several modes may
be simultaneously excited in the star, in which case the variable magnitude becomes
m(t) = m0 + ∑

i ai cos(2πνit − φi).
For larger (but still periodic) amplitude oscillations, the elementary variability shape

may not be sinusoidal anymore (e.g., Cepheids). In this case, peaks appear in the FT at
multiples of the fundamental frequency (1 over main period). Hence the signal model
is again of the form m(t) = m0+

∑
i ai cos(2πνit−φi), where ai, νi and φi are respec-

tively the amplitude, frequency and phase of the harmonics. The respective {ai} and
{φi} determine the shape of the curve (see e.g., Poretti 2002). In all cases, the variability
signal above is observed during a finite time. Assuming that no noise corrupts the light
from the star to the detector, the observed magnitude becomes: s(t) = m(t) × w(t),
where w(t) is usually referred to as observing or temporal window.

The main justification of FT analysis is (in principle) to allow one to isolate the
elementary frequencies of the signal. This is useful since several modes/harmonics
are in general present in variability curves, resulting in (sometimes very) complicated
spectra. Dropping the constant term m0 in the signal s(t) above, the FT can be written as

ŝ(ν) = m̂(ν) � ŵ(ν)

= 1

2

K∑
i=1

aie
j (φi− π

2 )ŵ(ν − νi) − aie
−j (φi− π

2 ) ŵ(ν + νi), (1)

where ̂ and � denote respectively FT and convolution, j = √−1 and ŵ(ν) is the
spectral window. Equation (1) shows that we face a deconvolution problem: from
ŝ(ν), we seek to reconstruct m̂(ν).

Below are some examples.

(a) The simplest case is that of one single mode (with parameters a0, ν0, φ0)
observed during one single observation night. Instead of a Dirac delta function,
the contribution of the spectral window appears at the frequency ν0 = 1/T0.
For box-car observing window, ŵ is a sinc function (sinc x = sin x/x).
The power spectrum (PS, or periodogram, squared FT modulus) becomes:
|̂s(ν)|2 = 1

4T 2a2
0 sinc 2[πT (ν − ν0)], where we assumed that the observation

duration T is much greater than the oscillation period T0. The frequency resolu-
tion (minimum frequency spacing for two different frequencies to be accurately
localized) corresponds basically to the width of the sinc function (2/T ≈ 70 µHz
for one 8-hour night). Hence, the longer the observation, the better the resolution.

(b) In the case of two oscillations (with parameters {a1, ν1, φ1} and {a2, ν2, φ2})
observed during one clear night, the PS becomes



On the Analysis of Light Curves in Asteroseismology 285

|̂s(ν)|2 = 1

4
T 2 {a2

1sinc 2[πT (ν − ν1)] + a2
2sinc 2[πT (ν − ν2)]}

+ 2a1a2sinc[πT (ν − ν1)]sinc[πT (ν − ν2)]

× cos[πT (ν2 − ν1) − (φ2 − φ1)]. (2)

The PS is not just the superimposition of the two elementary power spectral
responses of example (a) because of the third (interference) term. For a given T , this
term is important whenever ν1 and ν2 are close and T is not sufficiently large w.r.t.
the pulsation period. In this case, the phase difference is important as well. This
is illustrated in Fig. 1, left panels, with ν1 = 1 mHz and �ν = ν1 − ν2 = 42 µHz.
The beating of the two frequencies creates an equivocal representation of the sig-
nal. The ambiguity arises in the variability light curve also, which appears as one
single cosine amplitude modulated mode even though two closely separated modes
are present. The situation of closely separated modes is frequent in asteroseis-
mology (magnetic (Unno et al. 1989) and rotational (Ledoux 1951) splitting); the
presence of amplitude modulated modes also (see Handler 2004 for a review of
this phenomenon in different classes of pulsating stars). In the latter case, the more
damped the oscillation, the less narrow the corresponding spectral representation
(see Christensen-Dalsgaard (2003), p. 20; Samadi et al. (2003) and references
therein for more on stellar oscillations’ excitation and damping). In both cases
unfortunately, the observer has no mean to determinate what is really happening
in the star, apart from increasing the resolution. From the PS curves (Fig. 1, left
panels), one sees that the maxima are not at the actual frequencies. Note also that
frequencies only do not tell the whole story: the PS strongly depends on the phases
of the oscillations. According to �φ = φ2 − φ1 in equation (2), the maxima may
be moved either inside or outside the actual frequency pair.

(c) A solution for increasing the resolution is to observe the same star during two
(or more) consecutive nights. In this case, the PS becomes for a single oscillation
|̂s(ν)|2 = T 2a2

0sinc2[πT (ν − ν0)] cos2[πd(ν − ν0)], where d is the time inter-
val between the two observation sessions (typically d = 24 h). The sinc2 spectral
window’s envelope gets modulated by a cos2 function, yielding a fine structure.
The side lobes (“one-day” aliases) are separated from the main lobe by 11.5 µHz
typically (±1 d−1, ±2 d−1, etc.).

(d) Let us now take a look at the previous case of two oscillations (example (b)),
observed during two nights (Fig. 1, right panels). On the one hand, the maxima are
closer to the original frequencies than in the one-night case since the interference
term’s contribution has been reduced (T has been increased). On the other hand,
nine main peaks appear now in the PS. The fine structure (one-day aliases) are
clearly visible.

The effects described above complicate the frequency representation of the oscil-
lations. They can be far more complicated to understand when m(t) is unknown, and
when noise corrupts the data (see Christensen-Dalsgaard & Gough 1982).

2.2 Noise sources corrupting the model: The case of photometric observations

The pulsation signal m(t) of section 2.1 suffers first from reddening and absorp-
tion when propagating through the interstellar medium. The atmosphere presents sky
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Figure 1. Data with gaps, two oscillations: comparison of the power spectra for one night (left
panels) and two nights (right panels). Upper panels: �φ = π/2. Lower panels: �φ = 3π/2.

transparency variations depending on airmass, humidity, dust, etc.; this yields noise at
frequencies less than ≈1 or 2 mHz. Atmosphere also produces scintillation caused by
atmosphere’s density fluctuations (Warner 1988), the corresponding noise’s energy
being at higher frequencies (Dravins et al. 1998). The former is usually removed
by subtracting a few sinusoids to the data spectrum ( prewhitening method, Ponman
1981). The latter is often larger than photon noise for relatively (e.g., roAp) bright
stars. It can be decreased by using larger apertures (Young 1967) – and by observing
from Antarctica, see Fossat’s paper in this issue. Indeed, cosmic rays, clouds, planes,
meteors, etc. may cause bad data points creating gaps. The signal that eventually falls
on the detector is amplified according to the random gain and to the dead time of the
photomultipliers (equivalent though less pronounced noises occur with CCDs) and the
resulting signal is shaped for digitization. All these operations yield further distortions.
Many other insidious noise sources may (and often do) occur: e.g., moisture/dust on
optics and filters, telescope tracking oscillations (spurious periods of ≈ 2 to 4 sidereal
minutes), moonlight reflection inside the telescope (spurious periods according to the
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dome rotation), etc. (see Martinez 1993 for an extensive list). Consequently, it must
be kept in mind that the signal model of section 2.1 is the very idealization of what the
recorded “oscillation signal” may actually look like. The validity of the model may
sometimes be highly questionable. On the other hand, the noise list above shows how
difficult it can be to describe analytically departures from this model. Indeed, standard
reduction techniques help reducing these effects, but to some extent only, and they
may lead to artifacts as well (Balona 2002).

The comments above highlight how the simultaneous effects of gaps in the data,
beating between close frequencies, damping and various noises can be confusing and
lead to erroneous conclusions in the frequency analysis. If one goes for FT analysis,
phase information is essential and amplitude rather than power spectra must be pref-
erentially investigated. In order to increase the frequency resolution/reduce the data
gaps, astronomers are often using multi-site, worldwide campaigns (Whole Earth Tele-
scope, WET: e.g., Nather et al. 1990; STEllar PHotometry International: e.g., Michel
et al. 1992; Delta Scuti Network: e.g., Breger et al. 1995). Because uncooperative
weather, atmospheric and instrumental noises are unavoidable, the pitfalls and noises
summarized in sections 2.1 and 2.2 remain major limiting factors for the accuracy of
the variability analysis. As such, their nature and effects deserve to be as precisely
understood as possible.

3. FT-based methods

Several attempts have been made to analyze noisy Fourier spectra in some automated
and clever way. Two of them are discussed here: CLEAN is widely used — but often
as a “black-box” unfortunately, as confessed by experienced asteroseismlogists. The
Several Peaks Deconvolution (SPD) method may be considered as a “one-shot” variant
of CLEAN.

3.1 The CLEAN method

The CLEAN method was conceived by Jan Hogbom (1974) for eliminating side lobes
in radio interferometry. Schwarz (1978) showed that CLEAN is equivalent to LS fitting.
CLEAN assumes as signal model s(t) = ∑K

i=1 ai sin (2πνit + φi) × w(t), so that the
associated FT is as in equation (1). The algorithm performs the simple iterations (in
the sequel, the symbol ˜ denotes estimates):

(1) Find the frequency ν̃i , amplitude ãi and phase φ̃i of the largest peak,
(2) Subtract the scaled contribution of ŵ(ν − ν̃i) from the FT (1),
(3) Back to 1, or stop iterating as the FT residual is inferior to the noise level.

An example of CLEAN for a simulated oscillation signal is presented in Fig. 2
(K = 5). In this case, amplitudes, frequencies and phases are found with a relative
precision of 10−3. Note however that, even without noise, the residual is not zero.
Indeed, at each iteration the maximum peak’s frequency ν̃i = νi +δνi is displaced from
the true frequency νi because of interferences. The estimated amplitude and phases
are slightly incorrect as well (say ai + δai and φi + δφi). Hence, terms of the form
(a + δai)ie

j (φ+δφi i− π
2 )ŵ(ν − νi + δνi) are subtracted from the FT of equation (1), so

that one cannot hope the sum in equation (1) to be perfectly dismantled. The algo-
rithm is biased. Moreover, if we continue iterating in Fig. 2, an artifact peak will be
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Figure 2. CLEAN’s results for a 5 sinusoids (frequencies at 1, 2, 3, 4 and 5 mHz) signal.

found somewhere around 3 mHz, and then further ones if we continue iterating. For
real signals exhibiting closely separated modes and/or gaps and/or noise, CLEAN’s
drawbacks are emphasized. Foster (1995) proposed an improved version of CLEAN
(CLEANEST) which suffers however from the same impairments when there are gaps
(Janot-Pacheco et al. 1999). Note also that a proper noise level estimation is capital.
Many techniques exist for that purpose, see e.g., Roques et al. (1999) and references
therein. In the particular case of WET data, Castanheira et al. (2004) use the fact that
FT peaks whose amplitude is above four times the square root of the average power has
a 1 over 1000 probability to be noise. Once high amplitude peaks have been removed,
the noise in the residual FT can be estimated as the square root of the average power
(Kepler 1993). For WET data, it is then useful to weight differently several runs: the
higher the signal to noise ratio of the run, the larger the corresponding weight (Handler
et al. 2002).

3.2 Several Peaks Deconvolution (SPD)

Since the reciprocal peaks’ interferences contribute to CLEAN’s bias, one may seek
to estimate the set of {ai, φ} jointly. This was proposed by Pfeiffer (1993). The basic
idea is as follows:

(1) Determine a number of K main modes and associated frequencies {̃νi},
(2) Compute jointly the {̃ai, φ̃i} (“one-shot” (instead of iterative) approach),
(3) Repeat 1 and 2 for other sets of {̃νi} to find the best fit w.r.t. to the data.



On the Analysis of Light Curves in Asteroseismology 289

The signal model is unchanged, and the FT of the data is again modeled as in
equation (1), in which only positive frequencies are considered (say N frequency
points). For every frequency ν = 0, . . . , νmax, ŝ(ν) equals the sum of K contributions.
The goal is to find the {zi} = ai

2 ej (φi− π
2 ) which resolve this system of equations.

The amplitudes and phases can be obtained by ai = 2|zi | and φi = arg{zi} + π
2 .

This problem can easily be put in matrix form: ŴZ = Ŝ, where Z = [z1 z2 · · · zK ]T ,
Ŝ = [̂s(0) · · · ŝ(νmax)]T , and Ŵ is the (N × K) observation matrix. The system being
overdetermined (more data points N than peaks K), one may obtain an approximated
solution by LS. The formal solution Z0 is

Z0 = arg min
Z

‖Ŝ − ŴZ‖2 ⇒ Z0 = (Ŵ ŴH )−1ŴH Ŝ, (3)

where H denotes Hermitian transposition. As for CLEAN, the best LS fit of SPD may
not lead to good solutions for noisy signals. Why?

4. The point of view of ill-posed problems

Usually, the determination of the oscillations’ parameters is made by LS1 fitting, either
in the frequency domain (see above), or in the temporal domain2 (prewhitening, close
to CLEAN, see Ponman 1981). In both cases, the problem is equivalent to equation (3).
The solution minimizes the MSE, but how reliable is this solution? In other words,
how close are the estimated parameters from the actual ones?

That an LS fit (or any other data fitting technique) may not be meaningful is some-
thing that any astronomer is probably aware of3, and the precautions regarding the
use of LS have been discussed elsewhere (see Isobe et al. (1990) for applications in
Astronomy). It is maybe worth illustrating differently the meaning and implications
of the questions above. Let us take for that purpose the simple example of a 2 × 2
observation matrix Ŵ , and a 2 points data vector Ŝ for the system ŴZ = Ŝ. In this
case the solution Z0 is the intersection of two straight lines, see Fig. 3.

The sensitivity to noise can be more generally formulated as follows. Denote by
λi (resp. vi) the singular values (resp. vectors) of Ŵ , then the LS solution of equa-
tion (3) becomes Z0 = ∑K

i=1
1
λ2

i

(vT
i Ŵ T Ŝ)vi . We can always write the data vector as

Ŝ = Ŝstar + Ŝnoise, where Ŝstar is the signal delivered by the star and Ŝnoise is the con-
tribution of all the possible noise sources of section 2.2. Then we have

Z0 =
K∑

i=1

1

λ2
i

(vT
i Ŵ T Ŝstar)vi +

K∑
i=1

1

λ2
i

(vT
i Ŵ T Ŝnoise)vi. (4)

The second term in (4) shows that for small λi , the reconstructed LS solution suffers
from noise amplification. Furthermore, denoting by δX a perturbation on a vector X

1Invented by Gauss and Laplace in the beginning of the XIXth century for astronomical
applications.

2Combination of linear and non-linear LS are sometimes used, see e.g., Kurz et al. (1997)
for a detailed example.

3A major justification of LS is to yield the same estimate as the Maximum Likelihood
Estimate for Gaussian residuals — a condition not often met in practice.
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Figure 3. Illustration of the instability phenomenon in ill-conditioned problems. Left: The LS
solution Z0 is at the intersection of the two solid lines. If some perturbations occur on this setting
(noise in the data), the resulting LS solutions will be limited to the dashed zone. Right: Ŵ has
been changed. The LS solution Z0 is still at the intersection of the two solid lines. With the
same perturbation power as in the left panel, the corresponding LS solutions are very unstable
(S. Jankov 2003, personal communication).

and by‖X‖ its norm, one can show that (δZ0)/‖Z0‖ ≤ (λmax/λmin)(δŜ/‖Ŝ‖). The ratio
λmax/λmin is usually referred to as the condition number of the matrix Ŵ . The
former inequality shows that little perturbations on the data create space for strongly
different LS solutions. In asteroseismology, one obtains typically good conditioning
numbers for one (clear) night (λmax/λmin ≈ 1 or 2), whereas this number becomes
very large for two nights (λmax/λmin ≈ a few hundreds). The effects of gaps are to
introduce zeros in the Ŵ matrix whose columns tend to become similar. The weak-
est singular values tend to be even weaker, leading to the noise amplification in (4)
and to a situation comparable to that illustrated in Fig. 3, right panel. The solutions
{νi, ai, φi} obtained in this case are not trustworthy: because of noise and gaps, the
data are just too different from the model, which corresponds to good observation
conditions. Note that the analysis above does not leave us with doubt only: we have
some mean to measure in a precise, mathematical form, however far our results may
be from the actual parameters.

This kind of problems are named ill-posed or ill-conditioned problems, which means
that the solution to a proposed problem may not exist, may not be unique, and may
not be stable. In this case, many remedies exist, whose roots lie in the analyses above.
Improved LS-like methods have been on the one hand designed a long time ago:
e.g., reweighted LS allowing one to weight the data points/sets according to some
confidence criterion; total LS which accounts for the presence of noise both in the data
and the observation matrix (Golub & Van Loan 1980); different periodograms may
also be used, e.g., Lomb-Scargle periodogram (Scargle 1982); L1 norm in equation (3)
can be minimized (which increases the robustness); and combinations thereof (see
Branham (1990) for a review). Starting with Tikhonov & Arsenin (1977) on the other
hand, a series of signal restoration methods have been conceived. For example, one
may truncate the singular value decomposition so that the reconstructed solution in
equation (4) involves only sufficiently large eigenvalues; a priori constraints on the
reconstructed solutions (e.g., no aliases allowed, or smooth spectra) can be imposed
(regularization solutions in Bayesian approaches), etc. Such deconvolution problems
constitute an active field of research in the signal processing community (see the IEEE
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literature) and, to a less extent, in asteroseismology (see e.g., Roques et al. 1999).
In many approaches, the deconvolution is often performed over restricted frequency
supports only (i.e., where signal is large w.r.t. noise) so that the conditioning is better.
But one understands that in this case the question becomes: how to separate signal and
noise subspaces? Indeed, we miss knowledge about the part of the spectrum in which
the pulsations may occur, since this is precisely what we are looking for. An important
branch of these developments is supported by time-frequency representations, the
most widely used being Wavelets (Daubechies 1992) and Matching Pursuit (Mallat &
Zhang 1993). In these representations the time information is not lost (as in Fourier
spectra). This feature is particularly attractive for noise discrimination (see Donoho &
Johnstone 1994) and amplitude modulation detection. Roques et al. (1999) have used
MP to detect which frequency intervals contain signal, and to perform deconvolution
on the corresponding frequency supports. Such approaches allow both a high resolution
restoration of m(t) – even better than FT on some frequency intervals – along with a
precise evaluation of the reliability of the solution.

5. Conclusions

Because uncooperative weather, atmospheric and instrumental noises are unavoidable
in astronomical observations, data gaps and other noise sources remain major limiting
factors for the accuracy of frequencies determination in asteroseismology. As such,
their effects deserve to be most precisely understood. When analyzing light curves,
astronomers traditionally use LS techniques and FT representation. Being aware of
CLEAN-like method’s impairments, the most careful ones use them for guidance only.
In practice, the FT is often dismantled by hand, and it is analyzed according to the
available information about the observational conditions, to the astronomers’ previous
knowledge of the star and, last but not least, to their own experience. In the parlance
of Bayes, this is named a priori information. Indeed, such traditional methods often
work, otherwise asteroseismology would not have shown so many excellent results –
those reported in this special issue for example. However, many other efficient signal
analysis tools exist – and many remain to be developed. These are interesting, regarding
at least three points.

Firstly, these tools can provide a precise evaluation of the confidence level of the
results.

Secondly, they may be more appropriate than the traditional techniques discussed
above in the case of particular asteroseismologic phenomena (e.g., wavelets/MP help
analysing amplitude modulation and frequency drifts).

Thirdly, such approaches provide an effort towards an explicit, mathematical for-
mulation of the a priori information that can be injected in the analysis — in contrast
to the more implicit savoir-faire of experienced asteroseismologists.
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