MNRAS **522**, 5588–5599 (2023) Advance Access publication 2023 April 27

Intranight optical variability of blazars and radio-quiet quasars using the ZTF survey

Vibhore Negi[®],^{1,2}* Gopal-Krishna,³ Ravi Joshi[®],^{4,5} Hum Chand,⁶ Paul J. Wiita,⁷ P. K. Navaneeth⁸ and Ravi S. Singh²

¹Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263002, Uttarakhand, India

²Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, Uttar Pradesh, India

³UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai 400098, Maharashtra, India

⁵Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China

⁷Department of Physics, The College of New Jersey, PO Box 7718, Ewing, NJ 08628-0718, USA

⁸Department of Physics, Central University of Karnataka, Kadaganchi 585367, Karnataka, India

Accepted 2023 April 20. Received 2023 March 20; in original form 2022 September 20

ABSTRACT

We explore the potential of the ongoing Zwicky Transient Facility (ZTF) survey for studying intranight optical variability (INOV) of active galactic nuclei (AGNs), in particular for picking rare events of large INOV amplitudes, whose detection may require extensive temporal coverage. For this, we have used the available high cadence subsets of the ZTF data base to build a well-defined large sample of 53 blazars and another sample of 132 radio-quiet quasars (RQQs), matched to the blazar sample in the redshift—magnitude plane. High-cadence ZTF monitoring of these two matched samples is available, respectively, for 156 and 418 intranight sessions. Median durations for both sets of sessions are 3.7 h. The two classes of powerful AGNs monitored in these sessions represent opposite extremes of jet activity. The present analysis of their ZTF light curves has revealed some strong INOV events that, although not exceptionally rare for blazars, are indeed so for RQQs, and their possible nature is briefly discussed.

Key words: galaxies: active - BL Lacertae objects: general - galaxies: jets - galaxies: photometry - quasars: general.

1 INTRODUCTION

Active galactic nuclei (AGNs) are known to radiate over a very wide frequency range, from radio to TeV γ -rays, and to show flux variability across the electromagnetic spectrum on diverse timescales (Blandford & Rees 1978; Urry & Padovani 1995; Wagner & Witzel 1995; Ulrich, Maraschi & Urry 1997). This characteristic has been extensively used to probe the physics of their central engines that remain spatially unresolved in direct observations (e.g. reviews by Antonucci 1993; Marscher 2016; Blandford, Meier & Readhead 2019). The optical flux variations of AGNs on hour-like (or even shorter) time-scales are commonly referred to as 'micro-variability' (Miller, Carini & Goodrich 1989) or 'intranight optical variability' (INOV; Gopal-Krishna, Sagar & Wiita 1995; Gopal-Krishna et al. 2003). In the case of blazars and other γ -ray-detected AGNs, INOV amplitude (ψ) reaching a tenth of magnitude, or even more, is not very rare, whereas much weaker INOV is displayed by the remaining classes of AGN (e.g. Stalin et al. 2004a, b; Goyal et al. 2013; Gopal-Krishna & Wiita 2018, hereafter GW18).

The INOV of blazars is widely linked to turbulence in their relativistic jets (e.g. Marscher, Gear & Travis 1992; Goyal et al.

2012; Marscher 2014; Calafut & Wiita 2015; Webb et al. 2021), such that any tiny emissivity fluctuations arising within the jet flow can appear hugely amplified due to the jet's bulk relativistic motion (e.g. Singal & Gopal-Krishna 1985; Giannios, Uzdensky & Begelman 2009; Biteau & Giebels 2012; Narayan & Piran 2012). It has been suggested that a broadly similar but milder version of this process, occurring inside intrinsically weak and less well aligned relativistic jet, could account for the low-level INOV exhibited by radio-quiet quasars (ROOs) (Gopal-Krishna et al. 2003, hereafter GSSW03; Stalin et al. 2004b). On the other hand, INOV of RQQs could even arise from flares occurring in the magnetized plasma of the accretion disc and in its environment (Zhang & Bao 1991; Mangalam & Wiita 1993) or due to shocks/instabilities in the accretion disc (Chakrabarti & Wiita 1993). Such possibilities make INOV studies a useful probe of the physics of the central engine and the relativistic jets emanating from it.

Although a good deal of observational effort has been invested over the past few decades, on characterizing the INOV displayed by diverse classes of AGN, the focus in most campaigns has clearly been on blazars (e.g. see the reviews GW18; Gupta 2018; Webb 2021). In such studies, each AGN was typically monitored quasi-continuously for durations between 2 and 6 h, using 1–2 m-class optical telescopes, thus achieving an INOV detection limit of ~1–2 per cent of amplitude (ψ). A large duty cycle of INOV detection (DC ~50–70 per cent)

⁴Indian Institute of Astrophysics, Koramangla, Bengaluru 560034, Karnataka, India

⁶Department of Physics and Astronomical Science, Central University of Himachal Pradesh (CUHP), Dharamshala 176215, Himachal Pradesh, India

^{*} E-mail: vibhore@aries.res.in, vibhore.negi18@gmail.com

has thus been established for BL Lacertae objects (BL Lacs) and the flat-spectrum radio quasars (FSRQs) exhibiting a high fractional polarization ($p_{opt} > 3$ per cent). In contrast, the remaining AGN classes, even including low-polarization FSRQs whose nuclear radio jets are relativistically beamed towards us, and the lobe-dominated radio quasars, were all found to exhibit only mild INOV (typically, $\psi \leq 3$ per cent), with a small INOV DC of approximately 10 per cent (see e.g. GSSW03 and references therein; Romero et al. 2002; Stalin et al. 2004a; Goyal et al. 2013; GW18).

In this work, we report a search for high-amplitude INOV of blazars and RQQs, the two classes of powerful AGN that represent the opposite extremes in jet activity. As compared to their previous INOV studies, our present samples of these two AGN classes are significantly larger and have been monitored more extensively, as part of the Zwicky Transient Facility (ZTF) survey (Masci et al. 2019), without any consideration of the activity levels of the individual sources. The ZTF survey scans the northern sky using a 47-deg² wide-field imager mounted on a 48-inch Schmidt telescope on Mount Palomar. The data base provides long-term light curves (LCs) interspersed with high cadence LCs that can be used for detecting rare events of large INOV. We first describe in Section 2 our sample selection and the ancillary data used. Section 3 describes the data analysis and presents the results obtained. This is followed by a brief discussion in Section 4. Our main conclusions are summarized in Section 5.

2 THE DATA AND SAMPLE SELECTION

The parent catalogue of the blazars covered in this study is the ROMA-BZCAT (Massaro et al. 2015), which lists a total of 3561 blazars, classified as BL Lacs, or FSRQs. Only 2751 of them were found in the ZTF data base (ZTF DR10¹). Out of these, we discarded 159 blazars labelled as 'uncertain type' and another 71 as 'candidate' BL Lac in the ROMA-BZCAT. Next, since the surface-brightness profile of the host galaxy of an AGN does not generally behave like a point source when convolved with the 'point spread function' (PSF), any intranight variation in PSF (i.e. 'seeing') can give rise to a changing ratio of light contributions from the AGN and its host galaxy. Such LCs can lead to spurious claims of INOV (Carini et al. 1991; Cellone, Romero & Combi 2000). In order to reduce this possibility to a negligible level, we have only selected sources lying at redshifts z > 0.3, leaving us with 1555 sources. Their (PSF-fitting-based) r-band LCs available in the ZTF data base were firstly cleaned up by accepting only the 'good quality' data, i.e. discarding the data points with ZTF CATFLAG score of zero. The ZTF survey determines model PSFs and employs them to generate a PSF-fit photometry catalogue using a version of DAOPHOT (Stetson 1987) optimized for ZTF, including an added benefit of de-blending by fitting to multiple detections simultaneously in a two-pass PSF fit (Masci et al. 2019). Further, ZTF treats the LCs observed in a particular field, filter, and CCD quadrant independently, and assigns them different observation IDs. Since combining the LCs from different fields and CCD quadrants can induce spurious variability, we have accepted for a given source only the LC corresponding to the observation ID with the highest number of data points (see also Negi et al. 2022). Next, in order to reduce the number of LCs with poor signal-to-noise ratio, we rejected all the sources having mean $m_r > 19$ over the duration of the ZTF survey.

¹https://www.ztf.caltech.edu/ztf-public-releases.html

As further filters, we rejected the LCs of duration (T) < 2 h and also those having gap(s) of > 1 h. As ZTF employs a small telescope (48-inch) and the exposure time for a single frame is small (~30 s), the photometric errors are relatively large for fainter sources. Hence, we have carried out a three-point median binning of the LCs, when required, provided the binning does not reduce the number (*N*) of data points in an LC to below 10. Thereafter, in order to reduce noisy LCs, we rejected sessions for which average quoted photometric error of the data points is >0.03 mag.

Lastly, as our final filter, all remaining sessions with less than 10 data points were discarded, leaving us with a final sample of 53 blazars, monitored in 156 ZTF intranight sessions. These consist of 46 FSROs (138 sessions) and 7 BL Lacs (18 sessions). For comparing the INOV of this sample of blazars with that of RQQs, we then constructed a preliminary 'matched sample' of ROOs out of the SDSS DR14 (Pâris et al. 2018). The matching was done in the $z-m_r$ plane, setting tolerances of ± 0.1 and ± 0.2 mag, respectively. This resulted in a set of about 20 matched ROOs for each blazar. For the matched sample of RQQs, we checked for the availability of ZTF r-band LCs and the same were found for 132 of the ROOs (418 sessions). Kolmogorov-Smirnov test (KS-test) on the two matched samples provides a D-statistic of 0.18 for magnitude and 0.09 for redshift, with a probability of null hypothesis being 0.14 and 0.91, respectively (see Fig. 1). Details of the blazar sample and the matched ROO sample are given in Tables A1 and A2. The median durations (T) of the LCs are found to be 3.7 h for both the blazar sample and the matched RQQ sample, with \sim 75 per cent of the blazar sessions and ~84 per cent of the RQQ sessions having T > 3 h (up to ~4 h; see Fig. 2).

3 ANALYSIS AND RESULTS

A preliminary check for INOV in the ZTF LCs (which are based on PSF-fitting photometry) of our matched samples of 53 blazars (156 sessions) and 153 RQQs (418 sessions) was made employing the widely used *F*-test (de Diego 2010). The *F*-value for each LC was computed from

$$F = \frac{\operatorname{Var}(q)}{\sum_{i=1}^{N} \sigma_{i, \operatorname{err}}^{2}(q)/N},$$
(1)

where Var(q) is the variance of the LC of the target AGN (RQQ/blazar), $\sigma_{i,err}(q)$ is the rms error on the *i*-th data point in the LC of the target AGN, and N is the number of data points in the LC. The computed value of F for each LC was compared with the critical *F*-value (F_c) computed for that session, for 99 per cent confidence level. The LCs showing $F \ge F_c$ (0.99) were shortlisted as candidates for INOV detection. In the next level check, each candidate LC was subjected to visual inspection of the optical field around both the target AGN and 3-4 comparison stars monitored concurrently with the AGN on the same CCD chip. The comparison stars were selected applying the criteria of a clean optical neighbourhood (the criterion also employed for the AGN, before claiming its INOV detection), as well as proximity to the target AGN in both position (within ~ 5 arcmin) and m_r ($|\Delta m_r| \leq 1.0$). The LCs of the comparison stars were then subjected to the F-test mentioned above. Applying this procedure, which is equivalent to the widely practiced 'differential photometry', to the shortlisted LCs of both the target AGN and the comparison stars, we were able to isolate good INOV candidate LCs of the blazars and RQQs [for which the computed $F > F_c(0.99)$, unlike the set of comparison stars]. All these LCs were subjected to a final check for any systematic variation in PSF (obtained from the ZTF data base) during the respective monitoring session and

Figure 1. The redshift and apparent magnitude distributions of the sample of blazars (53) and the control sample of RQQs (132). Left-hand panel: Median values of redshift for the two distributions are 1.15 (blazars) and 1.07 (RQQs). Right-hand panel: Distribution of the *r*-band apparent magnitudes for the blazar and RQQ samples, having median values of 18.0 and 17.8 mag, respectively.

Figure 2. The distributions of the observed time duration (T) for the LCs of blazars (156) and RQQs (418). The median values for both histograms are 3.7 h.

any AGN LC showing a variability trend correlated with the PSF variation was deemed to be unreliable and discarded. The above sequence of reliability checks has led to confirmation of INOV for six blazar sessions (involving four blazars) and three RQQ sessions.

Table 1 lists the computed *F*-values for all these nine LCs found to exhibit INOV in our analysis, along with the critical *F*-values at the desired significance level of α (= F_c^{α}). All these nine AGN LCs, together with the LCs of the corresponding comparison stars, are displayed in Figs 3–4, together with the respective PSF variation profiles. The images of the optical fields are shown in Figs A1 and A2. Also provided with each AGN LC are several observational and computed parameters, including the *F*-values (equation 1) and the INOV amplitude (ψ) that has been computed from the relation (Heidt & Wagner 1998)

$$\psi = \sqrt{(A_{\rm max} - A_{\rm min})^2 - 2\sigma^2},$$
 (2)

where A_{max} and A_{min} are the maximum and minimum values of the AGN LC and $\sigma^2 = \langle \sigma_q^2 \rangle$, where σ_q is the mean rms error for the data points in the LC.

4 DISCUSSION

The small number of the INOV events confirmed here in the ZTF LCs of the matched samples of blazars and RQQs can probably be ascribed to a combination of (i) the modest photometric sensitivity, specially for the large fraction of objects in our sample that are relatively faint $(m_r > 17.5)$, and (ii) the short durations (T) of the LCs (median ~ 3.7 h, Fig. 2).² Since the duration of nearly all our LCs is under 4 h, it is likely that the number of INOV detections has been underestimated for this reason. Furthermore, a good fraction of the blazars in the sample, although having a flat radio spectrum, may well be lacking a high optical polarization, which is a crucial diagnostic for INOV detection, as shown by Goyal et al. (2012). None the less, the small number of INOV events does not detract from the basic objective of our study, which is to look for any exceptionally large, rare INOV events, taking advantage of the extraordinarily large temporal coverage afforded by the ZTF data base. Such an INOV search is particularly salient for RQQs, as compared to blazars for which an extensive INOV literature has accumulated over the past three decades.

For the blazars, $\psi > 10$ per cent stands confirmed in four sessions, which is not unfamiliar (see e.g. the surveys by Heidt &

 2 It is known that the probability of INOV detection increases with the monitoring duration (*T*), at least up to 5–6 h (e.g. Gupta & Joshi 2005; Carini et al. 2007).

Table 1. Results of INOV analysis for the blazars (BLs) and RQQs in our sample, showing INOV detection.

AGNs	Date of Obs.	Ν	Т	F-test		$\overline{\psi}$	
(1)	yyyy/mm/dd (2)	(3)	(h) (4)	$F_{\rm c}(0.99)$ (5)	<i>F</i> _{LC} (6)	(per cent) (7)	
BL J064828.5-174405	2018-12-12	46	2.96	2.02	3.27	9	
BL J071355.7+193500	2019-11-08	68	2.18	1.78	1.94	19	
BL J071355.7+193500	2019-12-18	14	2.53	3.91	21.61	28	
BL J071355.7+193500	2019-12-19	19	3.90	3.13	23.99	35	
BL J074836.1+240024	2020-01-01	18	3.88	3.24	5.54	9	
BL J081126.7+014652	2020-01-04	19	3.63	3.13	5.12	8	
RQQ J082443.8+201901	2019-11-08	68	2.18	1.78	1.81	13	
RQQ J085903.6+123903	2019-11-26	59	2.06	1.86	5.84	14	
RQQ J092727.4-020832	2019-02-12	18	3.59	3.24	3.80	15	

Figure 3. The LCs of the blazar sessions with INOV confirmed in the present analysis. For each session, the top panel shows the LC of the target blazar, and the subsequent three lower panels show the LCs of the three selected comparison stars, in order of increasing distance (Δr) from the blazar. For each blazar/star, basic properties are mentioned near the top in the panel, whereas the estimated parameters from the variability analysis of the session are displayed near the bottom of the panel. The lowest panel shows the variation of the seeing (PSF) through the monitoring session.

Wagner 1998; Romero, Cellone & Combi 1999; Sagar et al. 2004; Stalin et al. 2004b; Webb et al. 2021). On the other hand, INOV events of such large amplitudes are exceptional in the case of RQQs, considering their much more modest INOV levels reported in the literature so far (Gopal-Krishna, Sagar & Wiita 1993, 1995; Jang & Miller 1995, 1997; Romero et al. 1999; Gopal-Krishna et al. 2003; Ramírez et al. 2004, 2009; Stalin et al. 2004a; Gupta & Joshi 2005; Carini et al. 2007; Joshi et al. 2011; Goyal et al. 2012; Joshi & Chand 2013). These studies have led to an upper limit of ψ = 3–5 per cent for RQQs (GW18). This work has revealed three INOV sessions for RQQs with ψ > 10 per cent (up to 15 per cent; see Fig. 4). These are J082443.8+201901, J085903.6+123903, and J092727.4–020832 (Table 1 and Fig. 4). We note that all these quasars are undetected in the Very Large Array Sky Survey (VLASS) at 3 GHz and we have adopted an upper limit of 384 μ Jy for each of them, being 3 rms noise for the survey (Gordon et al. 2021). The

Figure 3 - continued

corresponding upper limits for the radio-loudness parameter R_{5GHz} are 2.7, 1.2, and 1.9, respectively, i.e. below the threshold R = 10(Kellermann et al. 1989).³ Thus, we find here that even RQQs can, in rare instances, exhibit INOV amplitudes at levels that had hitherto been recorded only for radio-loud AGNs of blazar type. It is also interesting to note that in two of the three sessions (2019-11-08 and 2019-11-16, Fig. 4), the observed INOV is a dip in the LC. These temporally well-resolved emission dips on time-scale of ~ 1 h are similar to the striking 4 per cent amplitude dip of 1-h duration, which occurred during the intranight optical monitoring of the TeV blazar PG1553+113 (Gopal-Krishna et al. 2011). Those authors interpreted the short-duration dip in terms of a dusty cloud in the foreground of a superluminal optical knot in the jet, consistent with the scenario of 'superluminal gravitational lensing' proposed for blazar variability (Gopal-Krishna & Subramanian 1991). This explanation invoking foreground dusty cloud(s) would also be in accord with the fact that PG 1553+111 is known to have the highest known rotation measure among TeV blazars (Lico et al. 2020). However, if such an explanation were also to be applicable for the emission dips found here in the LCs of the two RQQs (Fig. 4), these RQQs would also be required to have superluminal optical jets (or micro-jets) in their nuclei. Thus, even in the event that their observed INOV has an external origin (and not directly originating within a relativistic jet, unlike the INOV of blazars), the present INOV observations of the two RQQs would still require the presence of a relativistic micro-jet in the nucleus. Various arguments and literature supporting such a possibility are summarized, e.g. in Hartley et al. (2019).

5 CONCLUSIONS

This study underscores the potential of the ongoing ZTF survey for detecting rare events of strong INOV of AGNs, particularly among RQQs whose INOV is generally known to be mild (no more than a few per cent). To search for stronger INOV levels, we have made use of ZTF data base for a well-defined sample of 53 blazars (156 sessions) and a matched sample containing 132 RQQs (418 sessions). INOV was thus detected in six and three ZTF sessions, targeting the blazar and RQQ samples, respectively. In these sessions, INOV amplitudes $\psi > 10$ per cent were detected not only for the six blazar sessions (which is not exceptional) but, unexpectedly, also in three RQQ sessions. This shows that a blazar-like INOV level can also be attained by RQQs, albeit very rarely. Note that two of these three INOV events are in fact well-resolved brightness 'dips' (~14 per cent), lasting about 1 h or less. An analogy with a similar well-

³The radio-loudness parameter has been estimated as $R = F_{5GHz}/F_B$. Due to non-detection of the targets at radio bands, radio flux (F_{5GHz}) has been estimated assuming the flux at 3 GHz to be $<384 \mu$ Jy (i.e. 3σ limit of the VLASS survey at 3 GHz; see Gordon et al. 2021) and scaling it to 5 GHz, using a spectral index (α) of -0.7. The flux at *B*-band (F_B) has been estimated from the apparent magnitude B taken from SIMBAD, using relation given by Schmidt & Green (1983). Due to the non-availability of m_B for the RQQ J092727.4–020832, its B-mag has been estimated from *u* and *g* magnitudes, using the transformation equations given by Jester et al. (2005).

Figure 4. The LCs of the three RQQ sessions with INOV confirmed in the present analysis. The top panel shows the LC of the RQQ and the subsequent three lower panels show the LCs of three comparison stars in the order of increasing distance (Δr) from the RQQ. For each RQQ/star, the basic properties are given near the top of the panel, whereas the estimated parameters from the variability analysis for the session are displayed near the bottom of the panel. The lowest panel shows the variation of the seeing (PSF) through the monitoring session.

resolved dip lasting ~ 1 h, observed in an LC of the TeV blazar PG 1553+111, suggests that the nuclei of these two RQQs probably also contain micro-jets of optical emission performing bulk relativistic motion.

ACKNOWLEDGEMENTS

We thank the referee for various comments and suggestions to improve the quality of the manuscript. We also acknowledge helpful discussions with Prof. Ram Sagar. GK would like to thank the Indian National Science Academy for a Senior Scientist position. VN thanks the Indian Institute of Astrophysics for hospitality. This work is based on observations obtained with the Samuel Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory as part of the Zwicky Transient Facility project. ZTF is supported by the National Science Foundation under Grant No. AST-2034437 and a collaboration including Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, Deutsches Elektronen-Synchrotron and Humboldt University, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, Trinity College Dublin, Lawrence Livermore National Laboratories, and IN2P3, France. Operations are conducted by COO, IPAC, and UW.

This research has made use of the NASA/IPAC Extragalactic Data base (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

DATA AVAILABILITY

The data used in this study are publicly available in the ZTF DR10.

REFERENCES

- Abdo A. A. et al., 2010, ApJ, 716, 30
- Antonucci R., 1993, ARA&A, 31, 473
- Biteau J., Giebels B., 2012, A&A, 548, A123
- Blandford R. D., Rees M. J., 1978, in Wolfe A. M., ed., Pittsburgh Conf. on BL Lac Objects. Univ. Pittsburgh, Pittsburgh, PA, p. 328
- Blandford R., Meier D., Readhead A., 2019, ARA&A, 57, 467
- Calafut V., Wiita P. J., 2015, J. Astrophys. Astron., 36, 255
- Carini M. T., Miller H. R., Noble J. C., Sadun A. C., 1991, AJ, 101, 1196
- Carini M. T., Noble J. C., Taylor R., Culler R., 2007, AJ, 133, 303
- Cellone S. A., Romero G. E., Combi J. A., 2000, AJ, 119, 1534
- Chakrabarti S. K., Wiita P. J., 1993, ApJ, 411, 602
- Chambers K. C. et al., 2016, preprint (arXiv:1612.05560)
- de Diego J. A., 2010, AJ, 139, 1269
- Giannios D., Uzdensky D. A., Begelman M. C., 2009, MNRAS, 395, L29

- Gopal-Krishna, Subramanian K., 1991, Nature, 349, 766
- Gopal-Krishna, Wiita P. J., 2018, Bull. Soc. R. Sci. Liege, 87, 281 (GW18)
- Gopal-Krishna, Sagar R., Wiita P. J., 1993, MNRAS, 262, 963
- Gopal-Krishna, Sagar R., Wiita P. J., 1995, MNRAS, 274, 701
- Gopal-Krishna, Stalin C. S., Sagar R., Wiita P. J., 2003, ApJ, 586, L25 (GSSW03)
- Gopal-Krishna, Goyal A., Joshi S., Karthick C., Sagar R., Wiita P. J., Anupama G. C., Sahu D. K., 2011, MNRAS, 416, 101
- Gordon Y. A. et al., 2021, ApJS, 255, 30
- Goyal A., Gopal-Krishna, Wiita P. J., Anupama G. C., Sahu D. K., Sagar R., Joshi S., 2012, A&A, 544, A37
- Goyal A., Gopal-Krishna, Wiita P. J., Stalin C. S., Sagar R., 2013, MNRAS, 435, 1300
- Gupta A., 2018, Galaxies, 6, 1
- Gupta A. C., Joshi U. C., 2005, A&A, 440, 855
- Hartley P., Jackson N., Sluse D., Stacey H. R., Vives-Arias H., 2019, MNRAS, 485, 3009
- Heidt J., Wagner S. J., 1998, A&A, 329, 853
- Jang M., Miller H. R., 1995, ApJ, 452, 582
- Jang M., Miller H. R., 1997, AJ, 114, 565
- Jester S. et al., 2005, AJ, 130, 873
- Joshi R., Chand H., 2013, MNRAS, 429, 1717
- Joshi R., Chand H., Gupta A. C., Wiita P. J., 2011, MNRAS, 412, 2717
- Kellermann K. I., Sramek R., Schmidt M., Shaffer D. B., Green R., 1989, AJ, 98, 1195
- Lico R. et al., 2020, A&A, 634, A87
- Mangalam A. V., Wiita P. J., 1993, ApJ, 406, 420
- Marscher A. P., 2014, ApJ, 780, 87
- Marscher A., 2016, Galaxies, 4, 37
- Marscher A. P., Gear W. K., Travis J. P., 1992, in Valtaoja E., Valtonen M., eds, Variability of Blazars. Cambridge Univ. Press, Cambridge, New York, p. 85

- Masci F. J. et al., 2019, PASP, 131, 018003
- Massaro E., Maselli A., Leto C., Marchegiani P., Perri M., Giommi P., Piranomonte S., 2015, Ap&SS, 357, 75
- Miller H. R., Carini M. T., Goodrich B. D., 1989, Nature, 337, 627
- Narayan R., Piran T., 2012, MNRAS, 420, 604
- Negi V., Joshi R., Chand K., Chand H., Wiita P., Ho L. C., Singh R. S., 2022, MNRAS, 510, 1791
- Pâris I. et al., 2018, A&A, 613, A51
- Ramírez A., de Diego J. A., Dultzin-Hacyan D., González-Pérez J. N., 2004, A&A, 421, 83
- Ramírez A., de Diego J. A., Dultzin D., González-Pérez J. N., 2009, AJ, 138, 991
- Romero G. E., Cellone S. A., Combi J. A., 1999, A&AS, 135, 477
- Romero G. E., Cellone S. A., Combi J. A., Andruchow I., 2002, A&A, 390, 431
- Sagar R., Stalin C. S., Gopal-Krishna, Wiita P. J., 2004, MNRAS, 348, 176
- Schmidt M., Green R. F., 1983, ApJ, 269, 352
- Singal K. A., Gopal-Krishna, 1985, MNRAS, 215, 383
- Stalin C. S., Gopal-Krishna, Sagar R., Wiita P. J., 2004a, J. Astrophys. Astron., 25, 1
- Stalin C. S., Gopal-Krishna, Sagar R., Wiita P. J., 2004b, MNRAS, 350, 175
- Stetson P. B., 1987, PASP, 99, 191
- Ulrich M.-H., Maraschi L., Urry C. M., 1997, ARA&A, 35, 445
- Urry C. M., Padovani P., 1995, PASP, 107, 803
- Wagner S. J., Witzel A., 1995, ARA&A, 33, 163
- Webb J. R., 2021, Galaxies, 9, 69
- Webb J. R. et al., 2021, Galaxies, 9, 114
- Zhang X. H., Bao G., 1991, A&A, 246, 21

n			
al.			

Downloaded from https://academic.oup.com/mnras/article/522/4/5588/7146213 by ARYABHATTA RESEARCH INSTITUTE OF OBSERVATIONAL SCIENCES(ARIES) user on 10 July 2023

APPENDIX: SOME EXTRA MATERIAL

Target Id	SDSS name	RA (J2000) (deg)	Dec. (J2000) (deg)	Redshift (z)	m_r^a	Fermi detection and class ^b
1	J054407-224109	86.031 531	-22.686 088	1.54	16.14	_
2	J061038-230145	92.661 609	-23.029389	2.85	18.52	-
3	J061357+130645	93.490 388	13.112623	0.74	18.47	-
4	J063053-132334	97.724612	-13.392908	1.02	18.28	-
5	J064828-174405	102.118740	-17.734838	1.23	17.26	-
6	J065358+370540	103.492837	37.094618	1.98	18.17	-
7	J071044+422054	107.684692	42.348 643	1.16	18.21	_
8	J071355+193500	108.482 003	19.583 465	0.54	18.68	LSP
9	J071424+353439	108.603 405	35.577737	1.62	18.22	-
10	J072201+372228	110.505 261	37.374635	1.63	17.99	-
11	J072516+142513	111.320038	14.420 509	1.04	18.22	LSP
12	J072614+215320	111.559419	21.888 938	1.86	18.46	-
13	J073051+404950	112.713957	40.830 805	2.50	18.50	-
14	J073256+254838	113.234 483	25.810795	1.44	18.60	-
15	J073807+174219	114.530811	17.705 291	0.42	17.21	LSP
16	J074110+311200	115.294 601	31.200 086	0.63	16.56	-
17	J074344+232838	115.937 384	23.477 522	0.78	18.58	-
18	J074451+292006	116.214 022	29.335 029	1.18	17.00	-
19	J074559+331334	116.497 199	33.226 175	0.61	17.91	-
20	J074836+240024	117.150463	24.006714	0.41	17.87	LSP
21	J075052+123104	117.716864	12.518 025	0.89	17.04	-
22	J075448+303355	118.703 559	30.565 299	0.80	18.02	-
23	J075650-154205	119.211 253	-15.701501	1.42	18.75	-
24	J080018+164556	120.078 301	16.765 915	0.31	18.17	-
25	J081126+014652	122.861 289	1.781181	1.15	18.02	LSP
26	J082550+030924	126.459751	3.156819	0.51	18.74	LSP
27	J084205+183541	130.521 237	18.594738	1.27	16.79	-
28	J085317+281350	133.324 298	28.230 585	0.92	18.04	-
29	J085441+575729	133.674 992	57.958 341	1.32	17.49	-
30	J085448+200630	133.703 651	20.108 531	0.31	15.09	LSP
31	J090910+012135	137.292 055	1.359 905	1.02	17.07	LSP
32	J090924+521632	137.352 847	52.275750	0.41	17.68	-
33	J091147+334916	137.949012	33.821 361	0.46	18.71	HSP
34	J092058+444153	140.243 586	44.698 345	2.19	17.83	LSP
35	J092223-052907	140.598 640	-5.485319	0.97	17.45	LSP
36	J092507+001913	141.282 581	0.320 545	1.72	17.15	-
37	J092824+444604	142.100 609	44.768 022	1.90	18.32	-
38	J093035+464408	142.646174	46.735759	2.03	18.53	-
39	J093309+461535	143.288 817	46.259 857	0.78	18.42	-
40	J095227+504850	148.113797	50.814 097	1.09	17.68	_
41	J095738+552257	149.409 102	55.382734	0.90	17.28	LSP
42	J100724+580203	151.853701	58.034 324	3.35	17.49	-
43	J100811+470521	152.047 613	47.089 325	0.34	18.42	-
44	J104146+523328	160.444 922	52.557 857	0.68	17.04	-
45	J104703-130832	161.766388	-13.142327	1.29	17.21	-
46	J183243+135747	278.179821	13.963 350	2.83	17.23	-
4/	J185027+282513	282.014955	28.420337	2.54	1/.49	-
48	J191810+552038	289.544 790	55.344 0/0	1.73	18.84	-
49 50	J193033-040245	294.223.937	-4.045 945	0.49	18.66	- L CD
50	J195542+513148	298.928072	51.530154	1.21	18.08	LSP
51	J202450+171813	300.235 685	1/.303 681	1.05	17.83	-
52 52	J2U314/+5455U3	307.949834	54.91/550	1.20	17.07	-
35	J255542+551840	358.426 244	55.511 306	1.93	18.47	-

Table A1. The sample of 53 blazars used in our study.

Notes. ^aMedian magnitude over the ZTF/INOV session. $\nu_s^{\text{peak}} < 10^{14}$ Hz). ^bLSP: low synchrotron peaked BL (i.e. $\nu_s^{\text{peak}} < 10^{14}$ Hz), HSP: high synchrotron peaked BL (i.e. $\nu_s^{\text{peak}} > 10^{16}$ Hz) (Abdo et 2010).

	25.22	D + (70000)	D (70000)	5 1110	a
Target Id	SDSS name	RA (J2000)	Dec. (J2000)	Redshift	m_r^a
		(deg)	(deg)	z	
1	1032108±413220	50 285 212	/1 530 155	2 47	17.12
2	1072517 ± 434553	111 323 030	41.559 155	1 50	17.53
2	1073330 ± 370818	113 378 585	37 138 522	1.57	18.00
3	1073330 ± 370818 1074125 ± 425605	115.378.383	12 024 020	0.66	17.01
4	1074123 ± 433003 1074224 ± 242847	115.554070	43.934 930	1.00	10.00
5	J074224 + 542647 J074258 + 222512	115.004.057	34.460.016	1.00	10.20
6	J074358+325512	115.992.811	32.380 832	0.91	17.25
7	J0/4420+381839	116.086 562	38.311087	0.41	17.81
8	J0/4445+200014	116.190.399	20.004 137	1.72	17.03
9	J074451+292006	116.214 022	29.335 029	1.18	16.92
10	J0/4458+301849	116.243 619	30.313 655	0.58	17.90
11	J074511+191942	116.296 970	19.328 622	0.38	18.17
12	J074527+222453	116.364 277	22.414 816	1.35	17.30
13	J074601+255635	116.507 260	25.943 216	0.68	17.91
14	J074645+314149	116.687 709	31.697 041	0.33	17.86
15	J074820+340752	117.087 376	34.131 323	0.34	18.15
16	J075054+425219	117.727 694	42.872 028	1.91	16.19
17	J075222+273823	118.095 486	27.639782	1.06	17.06
18	J075251+181108	118.212 981	18.185 625	1.92	18.17
19	J075331+182117	118.382 698	18.354 798	1.83	18.71
20	J075524+342134	118.850456	34.359 598	2.12	17.80
21	J075545+142941	118.941 219	14.494 748	0.54	18.04
22	J075851+220457	119.714 674	22.082731	0.82	16.98
23	J080112+191544	120.302 700	19.262 468	0.41	16.73
24	J080141+124208	120.423 193	12.702 425	1.36	18.75
25	J080148+174316	120.453 578	17.721 203	0.42	18.67
26	J080320+252602	120.833 697	25.434016	0.48	17.68
27	J080356+365723	120.986 896	36.956654	1.23	18.02
28	J080630+144242	121.626 243	14.711 801	1.22	16.94
29	J080704+360353	121.770407	36.064 887	0.47	17.69
30	J080954+074355	122.476615	7.7320 00	0.65	16.61
31	J081014+204021	122.560 971	20.672 652	2.52	17.33
32	J081331+254503	123.380 356	25.750871	1.51	16.08
33	J081558+154055	123.993 161	15.682035	2.23	17.72
34	J082234+170935	125.643 085	17.160016	1.78	18.84
35	J082443+201901	126.182 536	20.317 028	0.54	18.75
36	J083103+214553	127.765 630	21.764 860	1.53	18.60
37	J084912+144754	132.302 033	14.798 563	0.86	18.04
38	J084952+363927	132,469,769	36.657773	1.22	17.51
39	J085435+311020	133.649 394	31.172 445	0.85	17.27
40	1085502 + 321730	133,761,865	32,291,824	1.11	17.53
41	1085507 + 110139	133,779,817	11.027.697	1.07	18.28
42	1085903 ± 123903	134 764 826	12 651 006	1.07	17.60
43	1085648 ± 141321	134 202 769	14 222 786	0.34	17.69
44	1085733 ± 160017	134 388 345	16 004 941	0.83	17.02
45	1085813 ± 203746	134 555 582	20 629 494	0.79	17.48
46	1085831 ± 554922	134 630 476	55 822 876	2.06	17.70
47	1085853 ± 063909	134 722 608	6 6526 67	1.89	18.47
48	1085924 ± 463717	134 851 446	46 621 488	0.92	16.99
40 /0	$100001/1 \pm 232100$	135 058 001	23 352 713	1.42	18.60
7)	1000026 ± 204158	135 110 401	20,600,672	0.71	17.01
51	1090020 ± 204138 1000210 ± 233534	135 581 513	20.099.072	1.30	18.07
52	1090219 ± 230334 1000450 ± 220118	135.361 313	23.393.048	0.48	17.00
52	$J090430 \pm 230118$ $J000508 \pm 074151$	130.209 173	25.021 895	0.48	17.00
55	1000520 + 252022	136.200 912	25 500 275	2.04	19.47
55	1090529 ± 233033 1000607 ± 020026	130.371 301	2010.051	1.62	10.47
55	1090007 ± 030030	130.331 963	2 659 221	1.08	16.22
50	1090024 ± 100152	137.100.003	3.030 321	1.20	10.09
51	1090852 ± 102152 1000850 ± 254447	137.133 897	10.304 / 33	0.79	17.19
50	JU9U0JU+23444/	137.210.097	23.740.390	0.45	17.90
JY 60	1090903 + 4/3/10	137.203939	47.021 130	1.04	17.48
61	JU9U9U0+32303U	137.213 /38	32.008413	0.81	17.02
01	JU9U910+163522	137.317.023	10.589 605	1.07	17.47
02 62	J091120 + 1/2231 J001125 + 202802	137.830 808	17.373 382	0.65	17.91
05	J091135+293803	137.895 866	29.034 379	0.61	17.90
04	JU91143+145556	13/.93/0/1	14.932477	1.27	1/.1/

 Table A2. The sample of 132 RQQs used in our study.

Table A2
 - continued

Target Id	SDSS name	RA (J2000)	Dec. (J2000)	Redshift	m_r^a
	1001010 + 512010	120.057.014	(ucg)	1.40	10.75
65 66	J091213+513210 $J091307\pm442014$	138.057.214	51.536264 14 337322	1.48	18.75
50 57	J091334 + 352540	138.395 716	35.428.052	2.95	17.85
58	J091431+083742	138.632 417	8.628 568	0.65	17.08
59	J091511+201248	138.795 985	20.213 429	1.24	17.15
70	J091624+040943	139.103 242	4.162055	0.31	17.81
71	J091755+053749	139.479 292	5.630493	0.35	18.19
72	J091811+524255	139.545 982	52.715 538	2.11	17.89
73	J091845+060226	139.691 350	6.040617	0.79	17.51
/4 75	J091938 + 360246	139.911.014	36.046415	0.60	17.90
15 16	J092011 + 495405 J002100 + 182605	140.047 255	49.901111	1.09	17.12
70	1092100 + 183003 1092234 + 204020	140.231 379	20 672 439	0.94	17.09
78	1092234 ± 204020 1092311 ± 450918	140.044 077	45 155 261	1 11	18.04
79	J092537 + 102115	141.406 856	10.354 286	1.15	17.55
30	J092635+044013	141.646 336	4.670418	1.43	17.61
31	J092658+093248	141.745 314	9.546 807	0.42	17.97
32	J092702+084758	141.760914	8.799 665	2.20	17.88
33	J092703+522316	141.763 298	52.387 948	0.60	16.74
34	J092712+124458	141.801 348	12.749728	1.28	17.00
35	J092727-020833	141.864 283	-2.142 488	0.77	18.57
36	J092756+253007	141.987 012	25.502 194	1.20	16.83
57	J093015+482830	142.564 691	48.475 261	0.50	18.76
58 20	J093021 + 235329 J002046 + 021226	142.591 111	23.891.627	1.17	17.12
99 00	1093040 ± 031320 1003048 ± 230637	142.095 575	5.224 150 23 110 538	1.48	17.02
90 91	1093048 + 230037 1093113 + 052421	142.703793	5 406 035	1.25	17.00
)2	1093131 + 100337	142.879 506	10 060 509	0.80	18.47
93	J093210+501028	143.045 254	50.174 574	0.51	17.96
94	J093244+500938	143.184 913	50.160668	0.84	18.47
95	J093518+020415	143.825 816	2.071010	0.65	16.99
96	J093520+335548	143.836138	33.930054	0.69	17.91
97	J093531+451927	143.882 227	45.324364	0.67	18.98
98	J093623+171726	144.099 697	17.290848	0.50	18.76
99	J093651+104611	144.213 051	10.769 878	2.77	18.55
100	J093759+453801	144.498 376	45.633888	0.43	18.75
101	J093809+450420	144.539 /00	45.072.382	1.55	1/.51
102	1093820 ± 192933 1093833 ± 225031	144.008.004	19.495 155	0.40	17.69
104	1094202 ± 042244	145,508,538	4.379.059	3.27	17.09
105	J094323+020411	145.847 240	2.069 836	0.95	18.14
106	J094404+480646	146.018 439	48.112955	0.39	18.17
107	J094526+083629	146.361 811	8.608 149	1.46	18.75
08	J094607+495412	146.530 444	49.903 581	0.76	17.48
09	J094617+135425	146.574 110	13.907 049	1.85	18.71
10	J094651+494703	146.713 263	49.784 333	0.99	18.05
11	J094754+223752	146.975 601	22.631 240	2.54	18.58
112	J095047+480047	147.697.857	48.013174	1.74	17.17
115	J095122+223144	147.843926	22.528937	2.22	17.86
14	J093210+204310 I095411±561655	140.008 830 148 540 058	20.721 302	1.43	17.25
16	1095714 + 544017	140.349 930	54 671 553	2.10	17.79
17	J095852 + 465028	149.717.062	46.841.349	1.16	18.02
18	J095856+570820	149.734 265	57.138970	1.45	18.75
19	J100114+470232	150.309 700	47.042.271	2.17	17.72
20	J100133+570839	150.391 110	57.144 226	1.37	17.29
21	J100336+460550	150.902 763	46.097 445	1.66	17.99
122	J100502+465927	151.259788	46.990 950	0.95	17.09
123	J100755+452824	151.982 807	45.473 522	1.65	18.08
124	J101330+531559	153.375 730	53.266 567	1.51	16.31
.25	J101719+441704	154.330 649	44.284 505	0.39	17.81
.26	J102349+522151	155.955783	52.364 246	0.96	17.00
127	J103430+470820	158.627 206	47.138934	0.78	18.03

Target Id	SDSS name	RA (J2000)	Dec. (J2000)	Redshift	m_r^a
-		(deg)	(deg)	Z	
128	J104157+473329	160.491 437	47.558 253	1.64	17.26
129	J104336+494707	160.903 063	49.785 466	2.19	17.78
130	J104621+483322	161.589 891	48.556317	1.58	18.22
131	J105043+500329	162.683 299	50.058 170	0.62	17.51
132	J105141+523934	162.922 480	52.659 525	0.98	18.28

 Table A2
 - continued

Note. ^aMedian magnitude over the ZTF/INOV session.

Figure A1. The 5 arcmin × 5 arcmin optical cut-outs of the fields around the four blazars with INOV detection (this work). These cut-outs have been taken from the Panstarrs survey (Chambers et al. 2016). The target blazar and the selected comparison stars are marked with Q, 1, 2, and 3, respectively.

12400

0

Figure A2. The 5 arcmin \times 5 arcmin optical cut-outs of the fields around the three RQQs with INOV detection (this work). These cut-outs have been taken from the Panstarrs survey (Chambers et al. 2016). The target RQQ and the selected comparison stars are marked with Q, 1, 2, and 3, respectively.

This paper has been typeset from a $T_{\ensuremath{E}} X/I \!\! \ensuremath{\Delta} T_{\ensuremath{E}} X$ file prepared by the author.