
ORIGINAL RESEARCH 
https://doi.org/10.4209/aaqr.220092 

Aerosol and Air Quality Research | https://aaqr.org 1 of 26 Volume 22 | Issue 7 | 220092 

 
 

 

 

Aerosol and Air Quality 
Research 

 
 
Special Issue: 
Air Pollution and its Impact in 
South and Southeast Asia (III) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OPEN ACCESS  
 
 
Received: February 28, 2022 
Revised: April 29, 2022 
Accepted: May 1, 2022 
 
* Corresponding Author: 
sudhir.npl@nic.in; 
sudhircsir@gmail.com 
 
Publisher: 
Taiwan Association for Aerosol 
Research 
ISSN: 1680-8584 print  
ISSN: 2071-1409 online 
 

 Copyright: The Author(s). This 
is an open access article 
distributed under the terms of the 
Creative Commons Attribution 
License (CC BY 4.0), which permits 
unrestricted use, distribution, and 
reproduction in any medium, 
provided the original author and 
source are cited.

 
Seasonal Characteristics, Sources and Pollution 
Pathways of PM10 at High Altitudes Himalayas of 
India 
 
Nikki Choudhary1,2, Priyanka Srivastava 

3, Monami Dutta4,  
Sauryadeep Mukherjee4, Akansha Rai1,2, Jagdish Chandra Kuniyal5,  
Renu Lata6, Abhijit Chatterjee4, Manish Naja3, Narayanasamy Vijayan1,2,  
Tuhin Kumar Mandal1,2, Sudhir Kumar Sharma1,2* 
 
1 CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012, India 
2 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India 
3 Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital-263002, Uttrakhand, 
India 
4 Centre for Astroparticle Physics and Space Sciences, Bose Institute, Darjeeling-734102, India 
5 G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal-263643, Almora, India 
6 G. B. Pant National Institute of Himalayan Environment, Himachal Regional Centre, Mohal-
Kullu-175126, India 
 
ABSTRACT 

 
The present study represents the annual and seasonal concentration of PM10 over different 

sites (Darjeeling, Nainital, Mohal-Kullu) across the Himalayan region of India from July 2018 to 
December 2019. The collected PM10 samples were analyzed for carbonaceous aerosols [organic 
carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), primary organic carbon 
(POC), secondary organic carbon (SOC)] and major trace elements to inspect their possible sources. 
The annual average concentrations of PM10 over Mohal-Kullu, Nainital, and Darjeeling were recorded 
as 57 ± 32 µg m–3, 65 ± 41 µg m–3, and 54 ± 17 µg m–3, respectively. The high OC/EC ratio and 
significant correlation of OC with EC and WSOC with OC indicated a significant effect of biomass 
burning aerosols over the study sites. Principal component analysis/absolute principal component 
score (PCA/APCS) resolved four major sources: crustal/soil dust (26.6%), biomass burning/fossil 
fuel combustion (28%), vehicular emissions (28%), and industrial emissions/coal combustion (17%). 
Identification of the source region using the potential source contribution function (PSCF) and 
concentration weighted trajectories (CWT) showed that PM10 was mainly transported from the 
northwestern part of India (Haryana, Punjab), the northeastern region of Pakistan, the Thar Desert, 
and Indo-Gangetic Plain (IGP), which contributed to dust-related aerosols over the Himalayan region 
of India. 
 
Keywords: Aerosol, Principal component analysis, Carbonaceous aerosols, Primary organic carbon, 
Himalayas 
 

1 INTRODUCTION 
 

In recent decades, rising urbanization and booming industrialization have led to the release of 
various pollutants, predominately particulate matter (PM) (Cheng et al., 2007; Lim and Turpin, 
2002). The surge in particle load in the atmosphere has given rise to several environmental 
(climate change) and human health problems, especially across South Asia (Cheng et al., 2007; 
Fuzzi et al., 2015; Panwar et al., 2020; Tsai et al., 2012). The concentration and components of 
aerosols depend on their originating sources, atmospheric processes, and prevailing climatic 
conditions for the distribution of aerosols (Andreae and Crutzen, 1997; Rastogi and Sarin, 2006).  
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Carbonaceous fractions, the primary constituent of ambient PM, are a source of great concern 
globally due to their impact on regional and global climate along with the atmospheric system of 
Earth (Garza et al., 2008; Hansell, 2005; Lim and Turpin, 2002; Phairuang et al., 2020; Ram and Sarin, 
2011; Ramanathan and Carmichael, 2008). On the basis of physical and chemical characteristics, 
carbonaceous aerosols (CAs) are categorized as organic carbon (OC) and elemental carbon (EC). 
OC is released into the atmosphere from combustion, known as primary OC, or formed by gas-
to-particle conversion of volatile organic compounds (VOCs) (referred to as secondary organic 
aerosols [SOA]) (Gupta et al., 2007; Haque et al., 2016; Jimenez et al., 2009) whereas, EC is formed 
due to the partial combustion (low temperature and low oxygen availability) of carbonaceous 
fuels. CAs comprise a significant proportion of water-soluble organic carbon (WSOC), function as 
cloud condensation nuclei (CCN), are hygroscopic, and play a pivotal role in haze formation, posing 
a health risk (Hegde et al., 2016; Izhar et al., 2019). Besides carbonaceous fractions, PM constitutes 
various trace elements such as iron, zinc, manganese, and heavy metals such as cadmium, arsenic. 
Temperature, movement and flow of surface waters, atmospheric circulation, and wind speed all 
influence the transport of heavy metals and other pollutants (Briffa et al., 2020). Trace metals 
can adversely impact human health due to their physical presence within the lungs, which hinders 
gas exchange and allows adsorbed metals to leach into the cells as well as the bloodstream 
(Baboolal et al., 2020). Heavy metals have high density, atomic weights, or specific gravity (Duffus, 
2001; Popoola et al., 2018), and they come into the environment majorly through the deposition 
of particulates, vehicular emissions, road dust re-suspension, and construction activities (Shrivastav, 
2001) causing severe physiological health effects (Bollati et al., 2010; Khillare et al., 2004). 

While aerosol chemistry, temporal variation, and source identification have mainly focused on 
several urban agglomerations across India, therefore, the study of Himalayan aerosols has also 
piqued the interest of experts (Chatterjee et al., 2021; Gajananda et al., 2005; Kaushal et al., 2018; 
Kumar and Attri, 2016; Ram et al., 2008; Sarkar et al., 2014, 2015; Sheoran et al., 2021; Soni et 
al., 2020). The Indian Himalayan Region (IHR) is considered a pristine, ecologically fragile, rich in 
biodiversity, and highly vulnerable region on Earth (Rai et al., 2021; Yang et al., 2021; Yuan et al., 
2020). In addition, urban development raised energy consumption, causing perturbation to the 
Himalaya’s temperature and deteriorating its air quality (Ram and Sarin, 2010; Sharma et al., 2021). 
Being far from intensive anthropogenic activities, the loading of CAs increases with long-range 
transport into the IHR along the valleys, accelerating the melting of glaciers by depositing on the 
snow and ice surface (Yuan et al., 2020, 2021). Previous studies (Cong et al., 2015; Streets et al., 
2003; Xu et al., 2018; Yang et al., 2021; Zheng et al., 2017) show that pollutants are transported 
over the Himalayas during the pre-monsoon season, which coincides with the yearly extreme fire 
season in South Asia. Therefore, an in-depth study of particle chemistry gives a detailed description 
of their sources which helps in the development of appropriate mitigation initiatives that may 
enhance the air quality (Bond et al., 2013; Cao et al., 2006; Pope et al., 2009; Rai et al., 2020; 
Ramgolam et al., 2009; Sharma et al., 2017, 2018; Ramana et al., 2010). However, only a few 
studies using receptor models for chemical characterization and source identification have been 
conducted in the Himalayas (Adak et al., 2014; Panwar et al., 2020; Rai et al., 2020; Sharma et 
al., 2020a; Sharma et al., 2021; Sheoran et al., 2021; Soni et al., 2020). This study highlights the 
annual and seasonal variation of PM10 (aerodynamic diameter < 10 µm) and its components 
(carbonaceous and elemental) at Mohal-Kullu, Nainital, and Darjeeling and identifies the possible 
sources of carbonaceous species and elements of PM10 using principal component analysis/absolute 
principal component scores (PCA/APCS). To identify the specific source regions, we performed 
the backward trajectory, potential source contribution function (PSCF), and concentration weighted 
trajectory (CWT). Therefore, the present study on the year-long aerosol chemistry across the 
Indian Himalayas would undoubtedly be a valuable addition to the existing knowledge and database 
on atmospheric aerosol pollution.  
 

2 METHODS 
 
2.1 Study Area 

The sites were chosen to symbolize the vast stretch of the IHR in the Indian subcontinent, 
which incorporates the western, central, and eastern regions of the Indian Himalayas, respectively 
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(Fig. 1). The selected sites represent the combination of local and transboundary features of PM. 
A brief description of all the study sites is given below: 

Mohal-Kullu: The observational site, G. B. Pant ‘National Institute of Himalayan Environment’ 
(NIHE), Mohal-Kullu (31.9°N, 77.11°E, 1154 m above sea level (a.s.l.)) situated in the western 
Himalayan region. As per the microclimatic conditions, the valley is geographically divided into 
upper and lower valleys. The study site falls under a sub-temperate climate. The lower part of 
the valley is in the rain shadow zone, which receives the maximum rain during the winter season. 
The site also experiences heavy snowfall in the winter on the adjacent hilltops but melts within 
moments due to the increasing temperature (Kuniyal and Guleria, 2010) of the valley. Rapid 
urbanization over there resulted in increasing tourism and activities related to agro-horticulture. 
Other activities (biomass burning for residential heating, forest fires, and meteorology) around the 
experimental site and increased automobile emissions substantially influence the transboundary 
movement of air masses (Guleria et al., 2012; Kuniyal and Guleria, 2010). 

Nainital: The observational site, Aryabhatta Research Institute of Observational Sciences 
(ARIES), Nainital, is on Manora hill (29.39°N, 79.45°E, 1959 m a.s.l.) in the central Himalayan region. 
Low altitude mountains encircle this site, the Ganges valley to the southwest, forested areas, and 
peaking mountains in the northeast region (Fig. 1). The site is sparsely polluted, far from thermal 
power plants, industries, and immense polluted towns (Dumka et al., 2021; Sagar et al., 2015). 
The site represents the subtropical highland climatic region of India. Long-range transported dust 
dominates here during the summer/monsoon months (March–September) due to increased  

 

 
Fig. 1. Topographical map showing the sampling locations (Darjeeling, Nainital, and Mohal-Kullu) over the Himalayan region of 
India. (Source: Google map) 
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dust-laden activity over the Thar Desert as well as southwest Asia. During the winter months 
(January–February), domestic heating increases CAs emissions from wood-burning. A detailed 
description of the sampling location is discussed in previous studies (Hegde et al., 2016; Naja et 
al., 2016; Sagar et al., 2015; Sharma et al., 2020b; Sheoran et al., 2021). 

Darjeeling: The study site, Bose Institute, Darjeeling (27.01°N, 88.15°E, 2200 m a.s.l.), is 
located in the eastern Himalayas and surrounded by Nepal, Sikkim, and Bhutan from the west, 
north, and east sides, respectively. Geographically, Darjeeling is adjacent to the IGP region (a 
global hotspot for heavy aerosol loadings) (Chatterjee et al., 2021) and is majorly under the 
influence of tourist activities and biomass burning (Adak et al., 2014). During the monsoon season 
(June–September), the site has wet summers due to heavy rainfall. A detailed description of 
weather, topography, and influence of sources on particulate concentrations at the study site are 
discussed in previous studies (Chatterjee et al., 2021; Rai et al., 2020; Sharma et al., 2021). 

Four distinct seasons have been experienced in India [winter (January–February), summer (March–
May), monsoon (June–September), and post-monsoon (October–December)] during the year (Rai 
et al., 2021). These seasons are classified according to India Meteorological Department (IMD). 
 
2.2 Aerosol Sampling 

A respirable dust sampler (flow rate: 1.2 m3 min–1) was used to collect aerosols (24 h) (PM10) 
on a pre-baked (550°C for 5 h) Pallflex Tissuquartz filters (20 × 25 cm2) at three urban locations 
(Bose Institute, Darjeeling; ARIES, Nainital; G. B. Pant NIHE, Mohal-Kullu) from July 2018–December 
2019. The pre- (before sampling) and post- (after sampling) weights of the filters were recorded 
using a weighing balance (resolution: ± 10 µg). The gravimetric mass of PM10 was calculated as 
the difference of post- and pre-filters mass (in µg) divided by the sampled air volume (m3) passing 
through the filters. Before the chemical analysis, the filters were kept in a deep freezer at –20°C. 

 
2.3 Chemical Analysis 
2.3.1 OC and EC analysis 

The OC/EC carbon analyzer (DRI 2001A, Atmoslytic Inc., Calabasas, CA, USA) was used to quantify 
the OC and EC using the Interagency Monitoring of PROtected Visual Environments (IMPROVE-A) 
procedure (Chow et al., 2004). The OC/EC analyzer uses a thermal-optical approach that involves 
volatilization of OC fractions using helium (at 140°C, 280°C, 480°C, and 580°C), followed by 
oxidation of EC fractions in 98% helium and 2% oxygen (at 580°C, 740°C, and 840°C). A filter 
punch (~0.536 cm2 area) was taken from the filter for the analysis. Detailed information on the 
method used was referenced therein (DRI 2001A user manual; Sharma et al., 2021). In addition, 
average blank concentrations of OC and EC were determined from the blank filters to correct 
sample results. 

 
2.3.2 WSOC analysis 

A TOC analyzer was used to determine the WSOC in PM10 samples (Model: Shimadzu TOC-L 
CPH/CPN, Japan). The analyzer works on catalytic-oxidation combustion at high temperatures 
(680°C) to convert OC components into CO2. The CO2 was detected using a non-dispersive infrared 
(NDIR) gas analyzer. A punch size of 30 mm (7.065 cm2) diameter from PM10 was employed for 
the analysis. Detailed information on the method used to estimate WSOC was discussed in 
reference therein (Rai et al., 2020; Sharma et al., 2021). 

 
2.3.3 Elemental analysis 

We used Wavelength Dispersive X-ray Fluorescence (WD-XRF) Spectrometer (Rigaku ZSX Primus) 
to determine different elements (Mg, Na, Al, Ca, Fe, Ti, Ni, Cl, S, P, K, Cr, Pb, Cu, Mn, B, Zr, Mo, 
and Zn) in PM10 samples. In addition, the blank filters were analyzed to accurate the intensities 
for the analyzed sample with repeatability error in the range of 5–10%. The detailed information 
on the analytical procedure is presented in Sharma et al. (2020a). 

 
2.4 Estimation of POC and SOC 

The most common method for estimating POC and SOC is the EC tracer method (Mishra and 
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Kulshrestha, 2021; Srinivas and Sarin, 2014). Both OC and EC are produced by the combustion of 
fuels, where EC is the primary tracer for POC. (OC/EC)min is the ratio of OC and EC of fresh aerosols 
emitted during combustion. The following formulas were used to calculate POC and SOC for each 
season separately: 

 
POC = [EC] × (OC/EC)min (1) 
 
SOC = OC – POC  (2) 
 
2.5 Enrichment Factors (EFs) 

To delineate the origin of trace metal abundances in aerosols, whether crustal or anthropogenic, 
EFs have been estimated. The EFs of the elements are computed (Taylor and McLennan, 1995) as: 

 
sample sample

crust crust

El X
EF

El X
=  (3) 

 
where,  
Elsample = Elemental concentration. 
Xsample = Reference element concentration (Al). 
Elcrust = Element concentration in earth crust. 
Xcrust = Reference element concentration in earth crust. 

Elements such as Al, Fe, and Ti are widely used as reference materials for calculating the 
enrichment factor (Taylor and McLennan, 1995). We selected Al (as a reference) element for this 
study due to its stable and spatially homogeneous distribution in the study area. 
 
2.6 Principal Component Analysis (PCA)/Absolute Principal Component Scores 
(APCS) 

PCA uses the Varimax rotation and orthogonal transformation method to recognize the data 
patterns. Eigenvalues were restricted to more than 1 for the extracted components. In PCA, the 
data is normalized using the formula: 
 

ij J
ij

j

C C
Z

σ
−

=  (4) 

 
where i denotes the sample number; j denotes the element number; Cij implies the measured 
elemental concentration i in jth observation; CJ depicts the arithmetic mean (AM) concentration, 
and 𝜎𝜎𝑗𝑗 signifies the standard deviation (SD) for element i. The formulation of the PCA model is as 
follows: 
 

( )
1

1, 2, ..., ;  1, 2, ..., ;  1, 2, ..., 
p

ij ik kj
k

Z g h i m j p k n
=

= = = =∑  (5) 

 
where k denotes the number of sources, hkj and gik are the factor scores and loadings, respectively 
(Song et al., 2006). On the basis of factor loading components, each source contribution is 
estimated using the APCS method (Thurston and Spengler, 1985). For APCS, normalization of PCA 
results was done using the formula: 
 

( )0
0 J J

j
j j

C C
Z

σ σ
−

= = −  (6) 

 
After rescaling the scores (known as APCS), linear regression was performed on APCS and the 

measured concentrations to obtain the accurate source contributions (Song et al., 2006). More 
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information about PCA/APCS model is found in reference therein (Duan et al., 2006; Guo et al., 
2004; Larsen and Baker, 2003; Miller et al., 2002; Thurston and Spengler, 1985). 

 
2.7 Air-Mass Back Trajectory (AMBT) and Probability Functions (PSCF and 
CWT) 

Air-mass backward trajectory (AMBT) has been widely used for the movement of air masses 
and their long-range transport, which depends on the source and pathway of air masses. We 
simulated the three days AMBTs using Hybrid Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT) model with meteorological data (1° × 1°) of the Global Data Assimilation System 
(GDAS) (Draxler and Hess, 1998) at different altitudes of 100 m (lower), 500 m (around boundary 
layer) and 1000 m (higher) above ground level (AGL) (Adak et al., 2014). Different heights were 
selected to study the significance of transboundary movement and local emission sources, which 
can interfere with the surface features (buildings) at lower altitudes. 

Air parcels contain a specific concentration of pollutants estimated using PSCF (Ashbaugh et 
al., 1985; Hwang and Hopke, 2007; Li et al., 2017). PSCF divides the potential source region into 
equal grids of i by j using Eq. (7): 
 

ij
ij

ij

m
PSCF

n
=  (7) 

 
nij denotes the frequency of the trajectories passing each grid cell (i, j), and mij denotes the 
frequency of pollutant concentration exceeding the predefined criteria value (90th percentile of 
source contribution). A key limitation of the PSCF is that if the sample concentration exceeds the 
specified percentile, similar PSCF values can be found in multiple grid cells, making it difficult to 
distinguish between low and high-impact sources. Therefore, CWT addresses this issue by assigning 
the species concentration and residence time to its corresponding air masses approaching the 
receptor location (Dumka et al., 2015; Li et al., 2017; Singh et al., 2018).  
 

3 RESULTS AND DISCUSSION 
 
3.1 Annual and Seasonal Variability of PM10 and its Carbonaceous 
Components (OC, EC, WSOC, POC, and TCA) 

The annual mean concentration of PM10 over Darjeeling (range: 21–116 µg m–3), Nainital (range: 
22–250 µg m–3), and Mohal-Kullu (range: 11–173 µg m–3) were found to be 54 ± 17 µg m–3, 65 ± 41 
µg m–3, and 57 ± 32 µg m–3, respectively (Table 1). Fig. S1 demonstrates the monthly average 
mass concentration of PM10 over the study sites. The study revealed that the maximum monthly 
averaged PM10 concentration was observed in March (73 µg m–3), May (120 µg m–3), and December 
(111 µg m–3) over Darjeeling, Nainital, and Mohal-Kullu, respectively. Whereas the minimum 
monthly averaged PM10 concentration was observed in December (39 µg m–3), August (29 µg m–3), 
and July (15 µg m–3) over Darjeeling, Nainital, and Mohal-Kullu, respectively. Fig. 2 shows the 
monthly average concentrations of OC, EC, and WSOC in PM10 and their mass ratios over the IHR. 

Table 1 illustrate the seasonal variation in PM10 mass concentrations at Darjeeling, Nainital, 
and Mohal-Kullu. The highest PM10 concentration was recorded in the summer season (March–
May) at Darjeeling (63 ± 21 µg m–3) and Nainital (100 ± 50 µg m–3), respectively, which might be 
due to the mechanism of elevated heat pump that the dust aerosols mixed with CAs primarily 
from IGP reaches the Himalayan foothills. In addition, the mixed aerosols were vertically advected 
to higher altitudes and significantly increased the aerosol load over the IHR (Chatterjee et al., 2010; 
Rai et al., 2021; Sharma et al., 2021). The observed results are in good agreement with the previous 
studies on Mount Abu (Ram et al., 2008), Manora peak (Hegde et al., 2016; Ram et al., 2008), 
Mohal-Kullu (Gajananda et al., 2005). On the other hand, the highest PM10 concentration over 
Mohal-Kullu was observed in the post-monsoon season (October–December) (76 ± 36 µg m–3), 
which may be associated with the shallow atmospheric boundary layer, more influx of tourist 
vehicles, excess biomass burning activities, and transboundary movement of air masses originated 
from the IGP region (Gajananda et al., 2005; Ram and Sarin, 2015).  
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Table 1. Annual and seasonal average variation in concentration of carbonaceous components (OC, EC, WSOC, POC, SOC, TCA) 
of PM10 over different sites of the IHR. 

Species Annual 
(Jul. 2018–Dec. 2019) 

Winter 
(Jan.–Feb.) 

Summer 
(Mar.–May) 

Monsoon 
(Jun.–Sep.) 

Post-monsoon 
(Oct.–Dec.) 

Darjeeling      
PM10 54 ± 17 51 ± 18 63 ± 21 52 ± 12 50 ± 15 
OC 5.39 ± 2.24 5.40 ± 2.02 5.18 ± 2.14 3.62 ± 0.87 6.29 ± 2.38 
EC 2.31 ± 1.14 2.68 ± 1.00 3.01 ± 1.15 1.15 ± 0.38 2.10 ± 0.96 
WSOC 3.59 ± 1.76 3.93 ± 1.29 3.43 ± 2.19 2.31 ± 0.77 4.48 ± 1.53 
POC 2.47 ± 1.54 3.41 ± 1.27 3.82 ± 1.46 1.46 ± 0.49 3.62 ± 1.59 
SOC 2.94 ± 1.45 1.99 ± 1.10 1.40 ± 0.97 2.15 ± 0.86 2.67 ± 1.22 
TCA 10.93 ± 4.47 11.32 ± 4.14 11.29 ± 4.51 6.94 ± 1.55 12.18 ± 4.61 

Nainital      
PM10 65 ± 41 38 ± 9 100 ± 50 81 ± 38 47 ± 14 
OC 5.27 ± 4.60 2.88 ± 0.98 8.26 ± 1.15 4.32 ± 1.61 4.31 ± 1.33 
EC 1.67 ± 1.06 1.32 ± 0.58 2.28 ± 1.43 1.45 ± 0.75 1.42 ± 0.74 
WSOC 3.67 ± 2.62 2.05 ± 0.58 5.66 ± 3.47 3.20 ± 1.40 3.01 ± 1.61 
POC 2.71 ± 1.71 2.13 ± 0.93 3.69 ± 2.32 2.35 ± 1.21 2.30 ± 1.19 
SOC 2.56 ± 3.51 0.75 ± 0.36 4.57 ± 5.59 1.97 ± 1.16 2.02 ± 1.19 
TCA 11.11 ± 8.69 6.71 ± 2.45 16.86 ± 13.26 9.24 ± 3.52 9.17 ± 2.95 

Mohal-Kullu      
PM10 57 ± 32 51 ± 16 52 ± 15 43 ± 26 76 ± 36 
OC 10.76 ± 8.26 11.14 ± 5.33 11.50 ± 6.21 6.54 ± 4.67 15.43 ± 9.96 
EC 3.50 ± 1.99 4.23 ± 1.91 3.66 ± 1.54 2.35 ± 1.31 4.67 ± 2.07 
WSOC 5.59 ± 3.27 5.32 ± 1.26  4.28 ± 3.00 4.33 ± 1.62 7.49 ± 4.11 
POC 6.82 ± 3.87 8.24 ± 3.73 7.13 ± 3.00 4.59 ± 2.56 9.11 ± 4.04 
SOC 3.94 ± 4.89 2.90 ± 1.97 4.37 ± 3.37 1.95 ± 2.49 6.33 ± 6.51 
TCA 20.71 ± 15.08 22.06 ± 10.39 22.05 ± 11.44 12.82 ± 8.70 29.36 ± 17.84 

 
During the study period, the annual mean concentrations of OC (Darjeeling: 5.39 ± 2.24 µg m–3; 

Nainital: 5.27 ± 4.60 µg m–3; Mohal-Kullu: 10.76 ± 8.26 µg m–3), EC (Darjeeling: 2.31 ± 1.14 µg m–3; 
Nainital: 1.67 ± 1.06 µg m–3; Mohal-Kullu: 3.50 ± 1.99 µg m–3), WSOC (Darjeeling: 3.59 ± 1.76 µg m–3; 
Nainital: 3.67 ± 2.62 µg m–3), and POC (Darjeeling: 2.47 ± 1.54 µg m–3; Nainital: 2.71 ± 1.71 µg m–3; 
Mohal-Kullu: 6.82 ± 3.87 µg m–3) were observed (Table 1). Table S1 shows the concentration of 
PM components (µg m–3) at different sites of the IHR.  

In the post-monsoon season, we observed the maximum concentration of OC (Darjeeling: 6.29 
± 2.38 µg m–3; Mohal-Kullu: 15.43 ± 9.96 µg m–3) and WSOC (Darjeeling: 4.48 ± 1.53 µg m–3) of 
PM10 (Fig. 3), which might be due to the biomass burning (wood burning) and lowering of the 
planetary boundary layer (Rai et al., 2021; Ram et al., 2008; Yadav et al., 2013). Nainital has 
recorded a maximum concentration of OC (8.26 ± 1.15 µg m–3) and WSOC (5.66 ± 3.47 µg m–3) 
during the summer season, which shows similarity with previous literature reported over high 
altitudes (Adhikary et al., 2007; Carrico et al., 2003). High concentration of EC (Darjeeling: 3.01 ± 
1.15 µg m–3; Nainital: 2.28 ± 1.43 µg m–3) and POC (Darjeeling: 3.82 ± 1.46 µg m–3; Nainital: 3.69 
± 2.32 µg m–3) were found in the summer season. Moreover, higher levels of OC and EC were 
observed in the post-monsoon and summer seasons, demonstrating the considerable influence 
of agricultural waste burning followed by rice and wheat harvesting in the northwestern region 
of the IGP and transborder movement of pollutants to the receptor sites (Chatterjee et al., 2021; 
Dumka et al., 2015, 2021; Rastogi et al., 2016; Sharma et al., 2021). During the study period, the 
monsoon season shows the minimum concentration of carbonaceous species in PM10, which might 
be due to rain-assisted washout (Ram et al., 2008; Sheoran et al., 2021; Yadav et al., 2013). 

 
3.2 OC/EC Ratio and WSOC/OC Ratio 

Table 2 highlights the average seasonal ratios of OC/EC and WSOC/OC at each location. In Fig. 2, 
the monthly average variation in OC/EC and WSOC/OC ratios are reported. Several researchers  
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Fig. 2. Monthly average concentrations of OC, EC, and WSOC (µg m–3) in PM10 and their mass ratios over different sites in the 
IHR. 

 
(Andreae and Merlet, 2001; Ram et al., 2008; Saarikoski et al., 2008; Sandradewi et al., 2008; 
Sudheer and Sarin, 2008) used OC/EC ratio for the identification of CAs sources and differentiate 
the pollution sources (primary and secondary emissions) which demonstrate higher ratio for biomass 
burning (BB) and lower for vehicular emission (VE). In this study, the OC/EC ratio exhibited a 
significant variability, ranging from 1.27 to 6.01 (average: 2.61 ± 1.02) and 1.62 to 10.76 (average: 
3.36 ± 1.73) over Darjeeling and Nainital, respectively. The obtained ratios agreed with those 
reported in the literature (Aggarwal et al., 2012; Ram et al., 2008; Rengarajan et al., 2007; Sharma 
et al., 2014a, 2014b). The wide range of OC/EC ratios indicates a relatively high fraction of organic 
aerosols from biomass burning and/or enhanced contribution from SOC formation (Ram and 
Sarin, 2015; Sheoran et al., 2021). During the winter season, a lower OC/EC ratio (Nainital: 2.33 ± 
0.53; Mohal-Kullu: 2.60 ± 0.34) was observed, which is attributable to the dominance of primary 
organic aerosols from BB (Meng et al., 2018; Ram et al., 2008), whereas Darjeeling shows a lower 
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OC/EC ratio in the summer season (1.74 ± 0.30) attributable to the formation of SOC (Lim and 
Turpin, 2002; Ram et al., 2008). The positive linear relationship of OC and EC suggests their 
emissions from common sources like BB or VE, where EC arises from primary combustion sources, 

 

 

 

 
Fig. 3. Seasonal average concentration of carbonaceous components (µg m–3) in PM10 at different 
sites in the IHR. 
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Table 2. Seasonal average variation in ratios of carbonaceous components (OC, EC, WSOC, SOC) of PM10 over different sites of 
the Himalayan region of India. 

Seasons 
Darjeeling Nainital Mohal-Kullu 

OC/EC WSOC/OC SOC/OC OC/EC WSOC/OC SOC/OC OC/EC WSOC/OC SOC/OC 
Winter 
(Jan.–Feb.) 

2.06 ± 0.37 0.74 ± 0.22 0.36 ± 0.13 2.33 ± 0.53 0.74 ± 0.15 0.28 ± 0.15 2.60 ± 0.34 0.55 ± 0.23 0.24 ± 0.10 

Summer 
(Mar.–May) 

1.74 ± 0.30 0.61 ± 0.19 0.25 ± 0.12 3.84 ± 2.20 0.75 ± 0.17 0.48 ± 0.20 2.98 ± 0.62 0.42 ± 0.20 
 

0.32 ± 0.14 

Monsoon 
(Jun.–Sep.) 

3.37 ± 1.00 0.65 ± 0.20 0.58 ± 0.15 3.35 ± 1.41 0.73 ± 0.10 0.45 ± 0.20 2.83 ± 0.80 0.84 ± 0.62 0.27 ± 0.16 

Post-monsoon 
(Oct.–Dec.) 

3.01 ± 0.85 0.80 ± 0.12 0.54 ± 0.14 3.70 ± 1.93 0.68 ± 0.19 0.47 ± 0.20 3.13 ± 0.80 0.60 ± 0.33 0.33 ± 0.16 

 
which implies that a major proportion of OC also originated from combustion sources (Dewangan 
et al., 2016; Kumar and Attri, 2016; Ram and Sarin, 2010; Sahu et al., 2018; Salma et al., 2004; 
Sharma et al., 2020a, 2021). A weak correlation between OC and EC shows that SOA was formed 
due to the gas-to-particle transformation of VOCs (Begum et al., 2013). Fig. S2 shows the scatter 
plots of OC and EC for study sites. OC and EC exhibit a significant linear trend during the winter 
season (Darjeeling: R2 = 0.765; Nainital: R2 = 0.854; Mohal-Kullu: R2 = 0.912). However, in the 
summer season, the observed samples are widely dispersed (Fig. S2). The well-defined seasonal 
variability is attributable to the emission potential of sources and the varying contribution from 
a variety of sources (fossil-fuel combustion (FFC), BB) (Ram et al., 2008; Ram and Sarin, 2015).  

The ratio of WSOC/OC is a unique tracer for describing the mechanism of SOA formation 
(Miyazaki et al., 2009; Ram and Sarin, 2011; Sheoran et al., 2021; Wang et al., 2019). WSOC/OC 
ratios provide information on chemically processed aerosols, emission processes, hygroscopicity, 
and atmospheric ageing (Kondo et al., 2007; Zhang et al., 2008). The ratio of WSOC/OC varied 
from 0.39 to 1.16 (average: 0.72 ± 0.16), and 0.08 to 1.14 (average: 0.70 ± 0.20) over Nainital and 
Darjeeling, respectively. A high WSOC/OC ratio observed during the summer months (Nainital: 
0.75 ± 0.17) attributable to the formation of SOA (Table 2) (Begum et al., 2013; Khare and Baruah, 
2010; Ram and Sarin, 2010, 2011; Rengarajan et al., 2007). A similar finding was reported for a 
high-altitude site in the western Himalayas at the Himansh observatory (average WSOC/OC: 0.60 
± 0.20) (Arun et al., 2019). The high WSOC/OC ratio showed that aged aerosols dominated the 
central Himalayas and long-distant aerosols from the IGP region (Ram and Sarin, 2015; Sheoran 
et al., 2021). The scatter plot of WSOC versus OC concentration exhibits a significant correlation 
in the summer season (Darjeeling: R2 = 0.905; Nainital: R2 = 0.797), followed by the post-monsoon, 
winter, and monsoon season (Table 2), indicating a considerable contribution from SOA (Fig. S2) 
(Lim and Turpin, 2002; Ram et al., 2008; Ram and Sarin, 2010; Wang et al., 2019). 

 
3.3 Secondary Organic Carbon (SOC) 

In Table 1, the mean concentrations of estimated SOC at study sites are reported annually and 
seasonally. The estimated SOC exhibited an average annual concentration of 2.94 µg m–3, 
2.56 µg m–3, and 3.94 µg m–3, corresponding to 54%, 48%, and 36% of the total OC mass over 
Darjeeling, Nainital, and Mohal-Kullu, respectively. Sheoran et al. (2021) reported the average 
SOC concentration of 1.99 µg m–3 at Nainital, corresponding to 23% of total OC mass. Previous 
studies (Pachauri et al., 2013; Shivani et al., 2019) reported the percentage contribution of SOC 
corresponding to total OC mass as 43–49% for PM2.5 in urban Delhi and accounted for 18%, 25%, 
and 60% of OC at traffic, rural, and remote sites, respectively, in Agra. On a seasonal basis, the 
contribution of SOC corresponding to OC over Darjeeling was highest in the monsoon season 
(59%), followed by post-monsoon (42%), winter (36%), and summer (27%) season. Whereas for 
Nainital, the SOC fraction to OC increases in summer (55%) and post-monsoon (46%) season and 
is lowest in winter (26%) season. Mohal-Kullu showed the highest percentage contribution of 
SOC to OC in the post-monsoon season (41%) and the lowest in winter (26%). One more study in 
Delhi reported a 50% contribution of SOC on OC, with the increased value in the summer and 
winter seasons due to the fast oxidation process and fog processing that affects the formation of 
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SOC (Rajput et al., 2018; Sheoran et al., 2021). The higher impact of SOC on OC in the summer 
season than in the winter season can be attributable to intense solar radiation and higher 
temperature that enhance the photochemical activities and formation of SOC (Cao et al., 2006; 
Murillo et al., 2013). 

 
3.4 Major and Trace Elements in PM10 and their Enrichment Factor (EF) 
3.4.1 Concentration of major and trace elements in PM10 

The mean concentration (annual and seasonal) of major and trace elements of PM10 over 
sampling sites were shown in Tables S2, S3, and S4. Fig. 4 shows the average seasonal concentration 
of extracted elements in PM10 at Darjeeling, Nainital, and Mohal-Kullu. Crustal elements dominate 
coarse fractions for all sampling sites (Chow et al., 2004). Over Darjeeling, the annual average 
concentration was observed as maximum for S (1.17 ± 0.7 µg m–3), Al (0.89 ± 0.76 µg m–3), K (0.63 
± 0.35 µg m–3), and Fe (0.61 ± 0.25 µg m–3) (Table S2). Over Nainital, the annual average 
concentration was observed highest for Ca (1.81 ± 1.88 µg m–3), Al (1.65 ± 1.73 µg m–3), Fe (1.42 
± 1.16 µg m–3), and S (1.35 ± 0.71 µg m–3) (Table S3). Overall, the annual average elemental 
concentration, along with its percentage contribution to PM10, was recorded as 5.24 ± 3.7 µg m–3 
(10%), 10.03 ± 9.12 µg m–3 (15%), and 10.84 ± 8.18 µg m–3 (20%) at Darjeeling, Nainital, and 
Mohal-Kullu, respectively. The seasonal average elemental concentration of PM10 was recorded 
as maximum in the summer season (5.97 ± 3.30 µg m–3) and minimum in the monsoon season 
(4.85 ± 3.53 µg m–3) over Darjeeling (Fig. 4). Whereas for Nainital, the maximum was observed in 
the summer season (16.01 ± 10.38 µg m–3) and the minimum in the winter season (6.11 ± 3.28 
µg m–3). Das et al. (2013) clearly reported that in the summer season, the dust particles traveled 
from the western and summer arid regions and accumulated at the foothills of the Himalayas 
(Soni et al., 2020). Furthermore, for Mohal-Kullu, the maximum was observed in the post-monsoon 
season (11.04 ± 5.81 µg m–3) and the minimum in the winter season (8.87 ± 2.50 µg m–3). 

 
3.4.2 Enrichment factor (EF) 

The elements found in Earth’s crust (Al, Fe, Ti, and Ca) are known as crustal elements exhibiting 
low EFs (< 5) in all seasons at all three sampling sites (Fig. 5). At Darjeeling, EFs of P, Cr, Zn, Pb, 
Ni, Mo, and B were recorded > 10, indicating their anthropogenic origin in all seasons (Chatterjee 
et al., 2010). Over Nainital, elements like Zn, Pb, B, Cu, Cr, Zr, Mo, Mn, and Ni showed EF > 10 for 
all seasons, which indicates their anthropogenic origin. Moreover, the highest EF of B, Mo, Cu, 
and Ni are attributable to the increased anthropogenic contribution such as industrial emissions 
(IE) (Shridhar et al., 2009). At Mohal-Kullu, EFs of Mg, Al, Na, Fe, P, Zr, Ca, K, and Sr in PM10 were 
recorded as < 10 in all the seasons, indicating their crustal origin. Moreover, EFs of V, Cr, Ba, and 
Zn were observed > 10 in all the seasons, indicating their anthropogenic origin. 

 
3.5 Source Apportionment of PM10 Using PCA/APCS 

SPSS software (IBM, version 26.0) has been used to conduct the PCA analysis. In PCA, Kaiser 
Normalization and Varimax rotation was applied to maximize the variance of species loadings to 
identify possible sources of PM10. Only principal components (PCs) having greater than 1 eigenvalue 
were considered in this study. 

 
3.5.1 Darjeeling 

In the present study, PCA has been carried out with PM10 species to identify the sources using 
higher factor loadings of PCs. PCA determined four PCs based on factor loadings that explain 69.1% 
of the total variance (Table 3). The first principal component (PC1) accounts for 30% of the variance 
that showed the highest loading of Al, Ti, Fe, Ca, Mg, and K, indicating crustal or soil dust (SD) as 
the primary source (Jain et al., 2017; Jangirh et al., 2022; Shivani et al., 2019). The EFs of the 
elements showing higher loadings in Factor 1 also confirmed their crustal origin as the significant 
source of PM10 over Darjeeling. Air mass trajectory shows that the continental air masses mainly 
originated from the northwestern regions of Darjeeling and indicated the resuspension of local 
and wind-blown soil dust particles for coarse mode aerosols and the influence of biomass burning 
from fine mode aerosols (Chatterjee et al., 2010). The second component was industrial 
emissions (IE) + coal combustion (CC), which showed the highest loading of Mg, Ni, Cr, P, Zn, and  

https://doi.org/10.4209/aaqr.220092
https://aaqr.org/
https://doi.org/10.4209/aaqr.220092
https://doi.org/10.4209/aaqr.220092
https://doi.org/10.4209/aaqr.220092
https://doi.org/10.4209/aaqr.220092


 ORIGINAL RESEARCH 
Special Issue on Air Pollution and its Impact in South and Southeast Asia (III) https://doi.org/10.4209/aaqr.220092 

Aerosol and Air Quality Research | https://aaqr.org 12 of 26 Volume 22 | Issue 7 | 220092 

  

 

 
Fig. 4. Seasonal average concentration of elements in PM10 at different sites of the IHR. 
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Fig. 5. Seasonal enrichment factors of PM10 at different study sites of the Himalayan region of 
India. 
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Table 3. Source profiles obtained from PCA analysis of PM10 over different sites in the IHR. 

Species 
Darjeeling Nainital Mohal-Kullu 

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 
OC - 0.066 0.840 0.301 0.569 - - 0.483 0.576 0.135 0.757 
EC 0.064 0.004 0.894 0.797 0.314 - - 0.547 0.539 0.187 0.728 
WSOC 0.094 0.149 0.798 - 0.464 0.408 - 0.591 - - - 
B 0.617 - 0.131 0.407 0.085 - - 0.875 0.935 0.125 0.297 
Na 0.783 0.337 0.100 0.236 0.085 - 0.919  0.961 0.130 0.228 
Mg 0.394 0.846 0.173 0.179 0.920 0.174 0.123 0.107 0.376 0.845 0.330 
Al 0.742 0.005 - - 0.908 0.291 0.161 0.119 0.082 0.878 0.267 
P - 0.975 0.026 0.086 0.761 0.585 0.018 0.066 0.213 0.892 0.332 
S 0.509 - 0.645 0.236 0.203 0.601 0.182 0.665 0.077 0.880 0.654 
Cl - 0.801 0.297 - 0.043 - 0.440 0.450 0.117 0.129 0.866 
K 0.557 0.120 0.766 0.040 0.771 0.381 0.037 0.575 0.924 0.275 0.559 
Ca 0.724 - 0.183 - 0.844 0.038 0.441 - 0.878 0.386 0.277 
Ti 0.760 0.315 0.227 0.051 0.914 0.223 0.131 0.262 - - - 
Cr - 0.948 - -  - 0.138 0.095 0.919 0.276 0.231 
Fe 0.814 - 0.380 0.025 0.909 0.245 0.225 0.101 0.523 0.767 0.320 
Ni 0.195 0.580 - - 0.142 0.131 0.703 0.161 - - - 
Cu 0.429 0.050 - 0.582 0.481 0.786 - - - - - 
Zn 0.421 0.048 0.317 - - - 0.272 - 0.936 0.263 0.223 
Mo 0.091 0.027 - 0.303 - 0.017 - - - - - 
Mn - - - - 0.592 0.031 - 0.028 - - - 
Br - - - - 0.089 0.057 - - - - - 
Zr 0.064 - 0.040 0.680 0.749 0.050 - - 0.282 0.106 0.090 
Pb - - - - 0.177 0.923 - - - - - 
F - - - - - - - - 0.969 0.095 0.079 
Ba - - - - - - - - 0.938 0.244 0.235 
Sr - - - - - - - - 0.900 0.212 0.278 
Eigenvalues 6.07 3.65 2.61 1.55 11.5 3.0 2.3 1.6 12.7 2.1 1.3 
Variance (%) 30.0 18.2 13.0 7.7 48.1 12.6 9.9 7.0 70.6 11.7 7.3 
Cumulative 
Variance (%) 

30.0 48.3 61.3 69.1 48.1 60.7 70.6 77.7 70.6 82.3 89.7 

Sources Crustal dust/SD IE + CC BB + FFC VE Crustal + MD IE VE BB + FFC VE + IE Crustal/SD BB + FFC 
% Contribution 10 24 31 35 55 7 13 25 54 15 29 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Eigenvalue 
> 1.00; factor loading ≥ 0.40 (highlighted as bold), BB: biomass burning, CC: coal combustion, FFC: fossil fuel 
combustions, MD: mineral dust, IE: industrial emissions, VE: vehicular emissions; % contribution of sources using APCS. 

 
Cl (Table 3) and contributed 18.2% of the total variance might be originating from small scale 
coal-based industries and coal engines (Gupta et al., 2007; Jain et al., 2017). Similar results were 
reported by Chatterjee et al. (2010) that the coal engine used by Darjeeling Himalayan railways 
is major source of coal combustion markers in Darjeeling. The third source showed the abundance 
of OC, K, EC, WSOC, S, and Cl in PC3, identified as BB/FFC (Jain et al., 2017; Jangirh et al., 2022; 
Song et al., 2006), accounting for 13% of the total variance (Table 3), which is also supported by 
the ratios of OC/EC and WSOC/OC (Sen et al., 2018). At last, the fourth component explains a 
7.7% variance with OC, EC, B, and Zr as dominant species, indicating vehicular emissions (VE) as 
one of the sources primarily due to the massive influx of tourists around the year (Chatterjee et 
al., 2021). 

 
3.5.2 Nainital 

22 chemical constituents of PM10 (carbonaceous and elements) have been used to identify the 
possible sources applying PCA. Four PCs that explain 77.7% of the total variance have been 
presented in Table 3. The first component explained 48.1% of the variance, and the higher load 
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of K, Al, Ti, Mg, Ca, and Fe accredited to crustal + mineral dust source (Balachandran et al., 2000; 
Jangirh et al., 2022; Khillare et al., 2004; Sheoran et al., 2021). Recent studies (Sharma et al., 
2021; Sheoran et al., 2021) reported mineral dust as the major aerosol source over Nainital using 
PSCF analysis that the major source locations were the Thar desert and desert areas in East Africa 
(Dumka et al., 2019; Sheoran et al., 2021). As per Fig. 7(b), the southwest monsoon (SWM) that 
passes the Arabian Sea transports the dust-laden air masses towards the Himalayas. The second 
factor accredited to the IE with considerable loading of Br, Mn, Ni, Zr, and Zn accounted for 12.6% 
variance (Chelani et al., 2008; Jain et al., 2019; Pant and Harrison, 2012). The third component, 
dominated by OC, EC, Ni, and Mn, accounted for 9.9% of the variance attributed to VE 
(Chakraborty and Gupta, 2010). At last, the fourth component assigned to BB + FFC shows higher 
loadings of K, OC, S, EC, Cl, and WSOC (Jain et al., 2019; Jangirh et al., 2022; Khare and Baruah, 
2010), with 7.2% of the variance. The high OC/EC ratio is also indicative of BB emissions. During 
the winter season, biomass/wood burning activities enhanced for heating purposes and long-range 
transport of air masses from BB source areas in Himachal Pradesh, Uttrakhand (forest fires), and 
Punjab (extensive agricultural BB) is also the major contributor to BB emission markers over 
Nainital (Sheoran et al., 2021). 

 
3.5.3 Mohal-Kullu 

Three components were resolved with a total variance of 89.7%. The first component was 
dominated by mixed elements attributed to the VE/IE source with a variance of 70.6% (Table 3). 
Crustal dust sources have been identified in the second component dominated by Mg, Al, P, S, 
Cl, and Fe, which accounted for 11.7% of the total variance (Table 3) (Jain et al., 2019; Jangirh et 
al., 2022). At last, the third component was dominated by the marker elements (OC, EC, S, Cl, K), 
attributed to BB + FFC (Table 3), and accounted for 7.3% of the total variance (Jain et al., 2017; 
Jangirh et al., 2022; Song et al., 2006). 

After PCA, APCS were calculated using factor scores and zero concentration (Larsen and Baker, 
2003). Then, linear regression was performed on APCS and measured concentrations of species 
to estimate the actual source contribution. The measured and predicted PM10 concentration 
using PCA/APCS was depicted in Fig. S4. The predicted species concentration in each source with 
R2 was listed in Tables S4–S7 for all sites. Fig. S3 depicts the concentration of chemical species 
from specific sources determined by APCS. Table S8 reported the identified sources of PM using 
receptor models over the different sites in the IHR. The percentage contribution of sources were 
estimated as 10%, 24%, 31%, and 35% for crustal/SD, IE + CC, BB + FFC, and VE, respectively, over 
Darjeeling (Table 3, Fig. 6). The percentage contribution of sources over Nainital was estimated 
as 55%, 7%, 13%, and 25% for crustal + mineral dust, IE, VE, and BB + FFC, respectively (Table 3). 
Over Mohal-Kullu, the estimated percentage contribution of sources was 54%, 15%, 29% for VE 
+ IE, crustal dust/SD, and BB + FFC, respectively (Fig. 6). Majorly the common sources of PM in the 
IHR are crustal/soil dust/mineral dust, BB/FFC, vehicular activities, and long-range transported 
aerosols (Table S8). Limited studies are available in the literature to intercompare the identified 
sources of PM using receptor models (Chatterjee et al., 2010; Panwar et al., 2020; Prabhu et al., 
2019; Sheoran et al., 2021; Soni et al., 2020). 

 

 
Fig. 6. Percentage contribution of sources over different study sites by PCA/APCS (a) Darjeeling (b) Nainital (c) Mohal-Kullu. 
(*VE: Vehicular emissions, IE: Industrial emissions, BB: Biomass burning, MD: Mineral dust, FFC: fossil fuel combustion, CC: Coal 
combustion). 
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3.6 Influence of Transport Pathway of PM10 
3.6.1 Backward trajectory 

In order to understand the path of particulate air masses reaching the sampling sites, we plotted 
annual and seasonal AMBTs at all heights (100 m, 500 m, and 1000 m), as shown in Figs. S5 and 
S6. Annual trajectories at different heights (Fig. S5) for all sites were mainly approaching from the 
local areas of Uttrakhand, Jammu and Kashmir, the Thar Desert, Himachal Pradesh, Afghanistan, 
the IGP region, and the Bay of Bengal (BoB). In addition, AMBTs at 500 m AGL for all sampling 
stations were studied to reduce the surface turbulence impact (Yang et al., 2017).  

Fig. 7 depicts the AMBTs at 500 m AGL at all receptor sites originating from local and long-distance 
regions where the IGP region was the major pollutant emitter. During the summer season, the 
heavy loadings of AMBTs arriving at Darjeeling (Fig. 7(a)) originated from the semi-arid (the Thar 
desert, Rajasthan, Punjab) and the IGP region, Assam, Nepal, and Sikkim. Significant transport of 
AMBTs was observed during the monsoon season, mainly originating from BoB, as reported by 
(Chatterjee et al., 2021; Rai et al., 2020, 2021). In contrast, local BB activities are a prominent 
source of PM during the winter season. 

During the summer season, the AMBTs arriving at Nainital (Fig. 7(b)) originated from Pakistan, 
Afghanistan, Iran, the Thar Desert, and the IGP region of India. The IGP region was the major 
source region during the winter season, where biomass/wood burning activities intensified due 
to prevailing meteorological conditions (low mixing height and low ambient temperature) (Sharma 
et al., 2021). Similar to Darjeeling, AMBTs originating from BoB reflected the influence of marine 
air masses at the receptor site in the monsoon season (Sharma et al., 2021; Sheoran et al., 2021). 

During the summer and winter seasons, the AMBTs arriving at Mohal-Kullu (Fig. 7(c)) originated 
from the local and upper IGP region, Afghanistan, Pakistan, and a few passing over the Arabian 
Sea. On the other hand, during the post-monsoon season, the heavy loadings of air masses came 
from northwestern countries (Iran, Afghanistan, Pakistan) (Gajananda et al., 2005). 

 
3.6.2 Potential source contribution function (PSCF) 

In order to determine the potential source areas of PM10 at the receptor sites (Darjeeling, 
Nainital, and Mohal-Kullu), the PSCF was done. The grids with a probability < 0.1 are marked as 
transparent, while other grids are shown in colours (lower probability grids are represented in 
lighter colours, and higher probability are shown in darker colours). Figs. S7–S10 depicts the annual 
and seasonal PSCF plots of PM10 at all heights (100 m, 500 m, and 1000 m AGL). A detailed 
description of PSCF results at sampling sites was as follows: 
Darjeeling: Overall, heavy loadings of westerly air masses were coming from Rajasthan, Uttar 
Pradesh, Madhya Pradesh, and other surrounding regions. In the summer season, majorly AMBTs 
originate from IGP and Nepal region (Ghosh et al., 2021; Rai et al., 2020, 2021), while in the winter 
as well as post-monsoon season, PSCF shows the source regions are Punjab, Haryana, Himachal 
Pradesh, Jammu and Kashmir (Fig. S9(a)).  

Nainital: During the summer season, most of the air masses approaching the receptor site 
came from Afghanistan, the Thar Desert, Pakistan, and the IGP region. During the monsoon 
season, southwest monsoon (SWM) airflows across the Arabian Sea transport dust-laden air 
masses over the receptor site (Fig. S9(b)). In addition, local biomass/wood burning activities lead 
to domestic heating in the winter season. In the post-monsoon season, the source regions are 
Himachal Pradesh, Uttrakhand, Punjab, and nearby areas where extensive agricultural residues 
burning and forest fires occur, contributing to the long-distance transport of pollutants at the 
receptor site (Sharma et al., 2021; Sheoran et al., 2021). 

Mohal-Kullu: The IGP and the Thar Desert were the primary source region over the receptor 
site. PSCF plots showed that the dominance of air masses was mainly from the west, northwest, 
southwest, south, and southeast directions (Fig. S9(c)). AMBTs and its PSCF analysis conclude 
that the source regions of pollutants are locally-originated from the continental landmass and 
transboundary movement of air masses (Fig. S9). Though the PSCF analysis successfully recognizes 
the source regions in the geographical area, the grid cells having a concentration of pollutant greater 
than the predetermined value have the same PSCF value, and the grid cells which are devoid of 
any endpoints and known pollution sources could not be considered as source region in this model. 
Therefore, annual and seasonal CWT was also done for all sampling locations (Figs. S11–S14). 
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Fig. 7. Seasonal air mass backward trajectories of PM10 at the height of 500 m (AGL) over (a) Darjeeling (b) Nainital (c) Mohal-
Kullu of India. 
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3.6.3 Concentration-weighted trajectory (CWT) 
CWT calculates the contribution of the source region in terms of PM concentration. Figs. S11–

S14 illustrate the annual and seasonal CWT plots of PM10 at all heights over each study site. 
However, measured concentrations of particulates were assigned to grids (termed as hot spots) 
for CWT analysis. The value of the grid signifies the magnitude of the effect of PM pollution over 
the observational sites.  

Darjeeling: The PM10 source regions were mainly local and regional, including the middle and 
upper IGP region (Fig. S13(a)). The maximum residence duration of AMBTs coming from the IGP 
region was similar to previous literature (Adak et al., 2014; Sen et al., 2018). During the winter 
season, Nepal and the IGP region of India contribute maximum to PM concentration, whereas 
lower CWT originated from the western region and concludes that diverse sources originated 
from Afghanistan, the Thar Desert, and Pakistan (Rai et al., 2020, 2021; Sharma et al., 2020a). 
The summer and post-monsoon seasons were considered peak tourism seasons when massive 
anthropogenic emissions of tourist vehicles and toy trains were observed over the study area. 
Sen et al. (2018) concluded a similar observation that western IGP contributed to particulate 
concentration in the post-monsoon season due to BB activities for cooking, heating, etc.  

Nainital: Fig. S13(b) shows the CWT plot of PM10 over Nainital at 500 m (AGL), showing the 
contribution from the probable source zone with high loadings. During the winter as well as post-
monsoon season, the PM sources were primarily local, IGP region, and from neighboring areas 
of Pakistan. Therefore, the PSCF and trajectory results aligned with the high CWT value, are the 
potential source areas. 

Mohal-Kullu: In all seasons, Fig. S13(c) shows that the significant sources of PM were local 
regions with higher CWT values. In addition, the long-range transport originated from IGP and 
nearby areas with lower CWT values.  
 

4 CONCLUSIONS 
 
This study examined the carbonaceous and elemental composition of PM10 collected over 

Darjeeling, Nainital, and Mohal-Kullu from July 2018 to December 2019. Seasonal variation of 
carbonaceous components and elements in PM10 at different sites were assessed to identify the 
prominent sources (PCA/APCS) of PM10 in the high altitude stations of the IHR and their source 
regions using PSCF and CWT analysis.  
Major outcomes of the present study are furnished below: 
1. The annual mean concentration of PM10 over Nainital, Darjeeling, and Mohal-Kullu was recorded 

as 65 ± 41 µg m–3, 54 ± 17 µg m–3, and 57 ± 32 µg m–3, respectively. The mass concentration 
of PM10 showed considerable seasonal variability, which might be attributed to long-distance 
transport of pollutants, local pollution sources, and prevailing climatic conditions.  

2. Carbonaceous component concentrations were highest in the winter and post-monsoon 
seasons (owing to increased burning operations throughout IGP and the Himalayas for 
household heating) at all three locations. In contrast, the lowest concentration was found 
during the monsoon season (due to the washout of pollutants).  

3. OC/EC ratio and WSOC/OC ratios were used to identify CAs and differentiate the sources as 
primary and secondary. During the winter season, a low OC/EC ratio is attributable to SOC 
formation. The high OC/EC ratio and their significant correlation indicate that the BB is one 
of the major sources in the IHR. WSOC/OC ratio showed that aged aerosols dominated the 
Himalayan region, and long-range transported aerosols from the IGP region also contributed 
to PM sources over the Himalayas.  

4. The enrichment factor shows the significant contribution of crustal/mineral dust in coarse 
mode aerosols over the study sites. 

5. The PCA revealed four common sources over the IHR: crustal/SD (26.6%), BB + FFC (28%), VE 
(28%), and IE + CC (17%).  

6. PSCF and CWT identified the source areas and showed that PM10 was primarily transported 
from northwestern parts of India (Haryana, Punjab), a northeastern region of Pakistan, and 
the Thar Desert. In contrast, the IGP and the Thar Desert contributed to dust-related aerosols 
over the receptor locations. 
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The findings of this study will be helpful in identifying the specific sources for emission 
inventories and effectively assessing the climate impacts across Himalayan regions. Further, it is 
expected that the present study will establish a long-term air quality monitoring network over 
the Himalayan region of India. 
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