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ABSTRACT
Interaction of intense radiation from the underlying accretion disc with a steady, general-
relativistic jet is studied. The radiation field imparts momentum as well as energy to the
outflowing jet under Compton scattering. As a result, the jet gains momentum and is si-
multaneously heated up. Jets can be classified as types A, B and C according to their base
properties. We found that A-type jets can undergo shock transition. It is also shown that, in the
Compton-scattering regime, radiation can drive jets starting with very small thermal energy at
the base (B- and C-type jets), such that radiation can even accelerate bound matter (generalized
Bernoulli parameter E < 1) in the form of relativistic transonic jets. This is in stark contrast to
radiatively driven jets in the Thomson-scattering regime, where transonic jets were obtained
only for E > 1. We also show that, for a given disc luminosity, jets in the Compton-scattering
regime exhibit a minimum terminal speed, unlike in the Thomson-scattering domain. Further,
the impact of accretion-disc luminosity and jet plasma composition is studied. The e−−p+

jets are accelerated up to Lorentz factors of about a few, while for lepton-dominated jets the
minimum Lorentz factor exceeds 10 for moderate disc luminosities and can go up to a few
tens for highly luminous discs.

Key words: radiation: dynamics – scattering – shock waves – stars: black holes – ISM: jets
and outflows.

1 IN T RO D U C T I O N

Astrophysical jets were first discovered by Curtis (1918) at optical
wavelengths while studying M87. After the advent of radio astron-
omy, these jets were studied in detail in the later half of the 19th
century. Since then, the jets have been recognized as ubiquitous
astrophysical phenomena associated with various classes of objects
like active galactic nuclei (AGN: e.g. M87, 3C 279), young stellar
objects (YSOs: e.g. HH 30, HH 34) and X-ray binaries (e.g. SS433,
Cyg X-3, GRS 1915 + 105, GRO 1655-40). In black hole (BH)
sources, jets can only emerge from accreting matter, because BHs
are not capable of emitting matter or radiation. The strong corre-
lation observed between spectral states of accretion discs and jet
evolution (Gallo, Fender & Pooley 2003; Fender, Gallo & Russell
2010; Rushton et al. 2010) suggests that the jets are launched by
the disc. Further, jets were observed to be launched from a region
within a few tens of Schwarzschild radii (rs) from the central BH
(Junor, Biretta & Livio 1999; Doeleman et al. 2012). Hence jets are
generated from the hot and more active inner region of the accretion
disc. These facts make it important to study the impact of thermal
pressure, as well as the radiation field, on the dynamics of the jet.
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Along with the development of various accretion disc models
(Shakura & Sunyaev 1973; Paczyński & Wiita 1980; Fukue 1987;
Chakrabarti 1989; Narayan, Kato & Honma 1997), several attempts
were made to understand the interaction of radiation from these
discs with outflowing jets. In this article, the jets are studied in
the radiation hydrodynamic (RHD) regime. The RHD equations of
motion (EoM) were developed by various authors in the special
relativistic or SR regime (Hsieh & Spiegel 1976; Calvini & Nobili
1982; Mihalas & Mihalas 1984; Kato, Fukue & Mineshige 1998)
and in the general relativistic (GR) regime (Park 2006; Takahashi
2007).

Significant development of the field started from the 1980s.
Sikora & Wilson (1981) studied particle jets driven by radiation in
the SR regime. Odell (1981) showed that the Thomson-scattering
radiation force increases for hot plasma, which might result in en-
hanced radiative driving called the ‘Compton rocket’. However,
Phinney (1982) downplayed the significance of the Compton rocket
in the presence of Compton cooling. Ferrari et al. (1985) studied
radiatively driven fluid jets in the SR regime. They considered New-
tonian gravitational potential, along with an isothermal equation of
state (EoS), with which they produced mildly relativistic jets and
obtained internal shocks as a manifestation of the jet geometry.
Icke (1989) studied the role of radiation drag on particle jets plying
through the radiation field produced by an infinite Keplerian disc.
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He discovered the upper limit of the speed of matter to be 0.45c,
where c is the speed of light in vacuum. Fukue (1996) studied par-
ticle jets under a radiation field, considering a pseudo-Newtonian
potential (pNp) to take care of strong gravity. Fukue, Tojyo & Hirai
(2001) considered a hybrid disc and produced jets with γT ∼ 2.

Through various numerical (Molteni, Ryu & Chakrabarti 1996;
Das et al. 2014; Lee et al. 2016) and theoretical studies (Chattopad-
hyay & Das 2007; Kumar & Chattopadhyay 2013, 2017; Kumar
et al. 2013; Kumar, Chattopadhyay & Mandal 2014; Chattopad-
hyay & Kumar 2016), it was found that an extrathermal gradient
force in the corona close to the BH automatically generates bipolar
outflows. Driving of jets by radiation from an advective disc was
also investigated (Chattopadhyay & Chakrabarti 2000a,b, 2002a,b).
In the non-relativistic regime, the formalism followed by Chattopad-
hyay & Chakrabarti (2000a, 2002a) is only correct up to the first
order of the flow velocity. Full relativistic transformations of radia-
tive moments were later considered and implemented for particle
jets in the SR regime (Chattopadhyay, Das & Chakrabarti 2004;
Chattopadhyay 2005). The disc chosen was of the hybrid type with
two sources of radiation: (i) the Keplerian disc and (ii) the post-
shock region of the sub-Keplerian component of the disc. These
authors also showed that relativistic jets (γT � 2) with impressive
collimation could be achieved for such jets.

Most of the above cited studies were conducted either in the
particle regime, i.e. the gas pressure was neglected compared with
the radiation pressure, or by considering fluids in the non-relativistic
regime. Vyas et al. (2015, hereafter VKMC15) solved the RHD
equations of motion for jets described by a relativistic EoS. The
authors considered special relativistic space–time and the gravity
was mimicked by a pNp that was initially proposed by Paczyński &
Wiita (1980). It is well known that, for hot flows, radiation driving
becomes ineffective and yet VKMC15 showed that jets can be
accelerated to relativistic terminal speeds. The strong temperature
gradient drives the jet just above the base and thereafter radiation
driving takes over. In fact, the thermal driving is so strong that it
accelerates the jet to a speed of about 10 per cent of the speed of
light within the first few Schwarzschild radii above the disc. In this
region, the radiation field actually decelerates the jet, due to an
effect called radiation drag, beyond which the jet is accelerated by
the radiation field.

There were two limitations of VKMC15: (i) combining SR with a
gravitational potential and (ii) consideration of conical flow geome-
try. We addressed these two issues separately in a general relativis-
tic analysis. We showed the formation of moderately strong internal
shocks to be a direct fallout of non-conical geometry (Vyas & Chat-
topadhyay 2017, hereafter VC17) and then radiation driving of jets
in curved geometry was considered for flow described by a fixed
adiabatic index (�) EoS (Vyas & Chattopadhyay 2018a), as well
as with a relativistic EoS (Vyas & Chattopadhyay 2018b, hereafter
VC18b). We showed that considering jets in the SR regime with
an ad hoc gravitational potential produces unphysically hot flow,
producing an additional thermal gradient push. In other words, be-
cause jets are supposed to be launched close to the compact object,
consideration of GR is important.

To simplify the analysis in most of the works cited above, the in-
teraction of disc radiation with jet matter was considered in the elas-
tic scattering regime. Under this assumption, the radiation field only
transfers momentum to the jet, but there is no energy transfer be-
tween them. If the radiation is of the order of � few × 10 KeV, then
an elastic scattering cross-section (i.e. Thomson-scattering cross-
section) is applicable, but if higher energy photons impinge on elec-
trons then a Thomson-scattering cross-section is untenable. There

were very few studies on Compton-driving of outflows. Quinn &
Paczynski (1985) and Turolla, Nobili & Calvani (1986) considered
radiatively driven winds accompanied by an energy exchange be-
tween radiation and matter, mostly in the optically thick regime.
There was initial apprehension about ‘a severe’ limit on driving a
jet in the optically thin regime because of the presence of radiation
drag (Icke 1989); however, later it was shown by a number of au-
thors that if the bulk of intense radiation comes from the inner part
of the accretion disc, radiation drag ceases to be a major obstacle
for jet driving (Chattopadhyay et al. 2004; Chattopadhyay 2005) at
a distance of about 100 Schwarzschild radii above the disc plane.
At such distances, the radiation field remains significant enough to
drive the jet matter.

In the current article, we consider radiatively driven jets in curved
space–time using a general scattering cross-section (Buchler &
Yueh 1976; Paczyński 1983), which enables energy as well as mo-
mentum transfer from radiation to the jet matter. The thermodynam-
ics of the jet material is described by a relativistic EoS (Chattopad-
hyay 2008; Chattopadhyay & Ryu 2009) and the radiation moments
were computed by considering the effects of space–time curvature
(Beloborodov 2002). In the elastic scattering regime (VC18b), the
radiatively driven jet solutions were primarily of two types: (i) jets
launched with a hot base and higher speeds and (ii) jets launched
with a moderately hot base but with almost negligible base speeds.
The second type of solution is due to the geometrically thick corona.
In this article, the height of the inner corona is adopted from Kato
et al. (1998) and the corona height cannot increase beyond a limit.
Therefore, it is indeed intriguing to find out how the jet solutions
would change in light of the two modifications considered, namely
Compton-scattering cross-section and modified corona size. VC18b
also obtained radiatively driven internal shocks. Do such solutions
survive in the Compton regime? How would the jet solutions be
modified if the composition of the flow is varied? These are some
of the questions that are discussed in this article.

In the next section, we present detailed mathematical formalism
including the EoM and estimation of the radiation field. We then
briefly discuss our methods of obtaining results in Section 3. We
describe the results of the study in Section 4 and conclude the article
in Section 5. A description of the relativistic EoS used is given in
Appendix A, while the detailed method of calculating the radiation
field is given in Appendix B.

2 MATHEMATI CAL FORMALI SM

2.1 Space–time metric, unit system and assumptions made
in the study

We consider a non-rotating black hole described by a Schwarzschild
metric:

ds2 = −gtt c
2 dt2 + grr dr2 + gθθ dθ2 + gφφ dφ2

= −
(

1 − 2GMB

c2r

)
c2 dt2 +

(
1 − 2GMB

c2r

)−1

dr2

+ r2 dθ2 + r2 sin2 θ dφ2. (1)

Here, r, θ , φ and t are space–time coordinates. MB and G are the BH
mass and the universal constant of gravitation, respectively. In this
article, we have used geometric units G = MB = c = 1, such that the
event horizon or Schwarzschild radius is rS = 2. The jet is assumed
to be around the axis of symmetry of the underlying accretion disc.
The jet is stationary and axisymmetric (i.e. ∂/∂t = ∂/∂φ = 0).
Since jets are collimated, we consider the jet to be conical (i.e.
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Compton-driven relativistic jets 4205

Figure 1. Cartoon diagram of the disc–jet system. The outer extent and
height of the corona xsh and Hsh, intercept of the outer disc on the axis (d0)
and outer edge of the disc x0 are shown. The funnel of the corona is also
shown.

cross-section A ∝ r2) with a narrow opening angle. In this article,
we do not consider the exact launching mechanism of jets from the
accretion disc: instead, the accretion disc acts only as the source
of radiation. The accretion disc is around the equatorial plane. The
inner part of the accretion disc has a geometrically thick corona and
the expression for the height of the corona (Hsh) is given as (Kato
et al. 1998)

Hsh = H ∗
(

1 −
√

2

xsh

)
. (2)

Here H∗ and xsh are upper limit of the corona height and horizontal
extent of the corona, respectively. The expression for the corona
cross-section is different from VC18b, where the corona was as-
sumed to be thick. In the current article, if the horizontal extent of
the corona is large, then the corona is geometrically slim (Hsh/xsh

< 1). A typical cartoon diagram of the assumed system is given
in Fig. 1, which shows a bipolar radial jet coming out of a nearby
region inside the coronal funnel. The outer portion of the disc is
also shown. The cartoon of the disc–jet system presupposes the jet
is launched from the inner part of the disc, although not explicitly
computed from first principles.

2.2 Radiation hydrodynamic equations governing the
dynamics of relativistic fluids

The energy–momentum tensors for matter (T μν
M ) and radiation (T μν

R )
are given by

T μν = T
μν
M + T

μν
R ,

where

T
μν
M = (e + p)uμuν + pgμν

and

T
μν
R =

∫
I lμlν d	. (3)

Here, uμ are the components of four-velocity, lμ are directional
derivatives, I is the frequency-integrated specific intensity of the
radiation field and d	 is the differential solid angle subtended by

a source point on the accretion-disc surface with reference to the
field point on the jet axis. The assumption of conical outflow along
the axis of symmetry of the accretion disc implies that the only
significant component of four-velocity is ur.

The equations of motion are given by

T μν
;ν = 0 and (ρuν);ν = 0. (4)

The momentum-balance equation obtained under the present set
of assumptions is along the radial direction:

ur dur

dr
+ 1

r2
= −

(
1 − 2

r
+ urur

)
1

e + p

dp

dr
+ ρe

√
grrγ 3

(e + p)
�r . (5)

Here, γ = −utut = (1 − v2)−1/2 is the bulk Lorentz factor of
the jet, where v = √

(−urur/utut ) is the three-velocity in the radial
direction. This means that ur = √

grrγ v. The total lepton mass
density is given by ρe and �r is the momentum imparted to the jet
plasma by the radiation field of the accretion disc, which is given
by

�r = σ

me

[
(1 + v2)R1 − v

(
grrR0 + R2

grr

)]
. (6)

The first three moments of the specific intensity of the radiation field
areR0,R1 andR2 and are identified as the radiation energy density,
flux and pressure, respectively. However, similarly to VC18b, we
refer to R0 = σTR0/(me), R1 = σTR1/(me) and R2 = σTR2/(me)
as the respective radiative moments. The detailed method of estima-
tion of radiative moments is given in Appendix B (see also VC18b).
The negative terms arise for an optically thin medium and as long as
the jet ‘sees’ the accretion disc as an extended radiator. These neg-
ative terms are called ‘radiation drag’ terms; they arise because of
the anisotropic nature of the radiation field and are stronger near the
disc surface. The scattering cross-section σ is given as (Buchler &
Yueh 1976; Paczyński 1983)

σ = χcσT =

⎡
⎢⎣ 1

1 +
(

Te
4.5×108

)0.86

⎤
⎥⎦ σT, (7)

where, σ T is the Thomson scattering cross-section. χ c accounts for
Compton processes (i.e. energy exchange between radiation and
matter) and is <1. Te is the electron temperature in physical units. It
is approximated as a function of N (Kumar & Chattopadhyay 2014;
Singh & Chattopadhyay 2018):

e = kTe

mec2
= −2

3
+ 1

3

√[
4 − 2

(
2N − 3

N − 3

)]
.

Although the form of equation (5) is similar to the one in VC18b,
the difference is in the expression for σ .

The first law of thermodynamics, or energy equation(
uαT

αβ
M;β

= −uμT
μν
R;ν

)
, is obtained as

de

dr
− e + p

ρ

dρ

dr
= −γρe(1 − χc)Rt√

grr
. (8)

Here Rt is the radiative contribution, representing energy exchange
between the imparted radiation and the fluid (the same as the heating
term of Park 2006):

Rt =
[

grrR0

v
+ vR2

grr
− 2R1

]
. (9)

Integrating the conservation of mass flux (the second part of equa-
tion 4), we obtain the mass outflow rate

Ṁo = ρurA. (10)
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Here A is the cross-section of the jet. Since the jet is transonic
and collimated, we assume the cross-section to be conical (A ∝
r2). However, the radiation supplies energy to the jet and makes
it hotter, which might raise the apprehension that the assumption
of conical jet may not hold. We discuss this in greater detail in
Section 5 and Appendix C and we show that the assumption is
reasonable. In VC18b, the elastic scattering assumption rendered
Rt = 0 and therefore, integrating equation (8) with the help of the
EoS (equation A1), we obtained the adiabatic relation between 

and ρ (Kumar et al. 2013). Replacing ρ of the adiabatic relation
in equation (10), we also obtained the expression for the entropy-
outflow rate (VKMC15; VC18b):

Ṁ = exp(k3)3/2(3 + 2)k1 (3 + 2/η)k2urA, (11)

where k1 = 3(2 − ξ )/4, k2 = 3ξ /4 and k3 = (f − τ )/(2). This is also
a measure of entropy of the jet and, unlike VKMC15 and VC18b,
Ṁ is not a constant in this article.

Integrating the first part of equation (4) is equivalent to integrating
equations (5) and (8) simultaneously and we obtain the generalized,
relativistic Bernoulli constant as the constant of motion:

E = −hute
−Xf ,

where

Xf =
∫

dr
γ (2 − ξ )

(f + 2)
√

grr

[�r − (1 − χc)Rt

]
. (12)

In the absence of radiation, this is merely E = Et = −hut. With the
help of equation (A2), equations (5) and (8) can be expressed as
gradients of v and  and are given by

γ 2vgrr r2

(
1 − a2

v2

)
dv

dr
= a2

(
grr r2

A
dA
dr

+ 1

)
− 1

+ (2 − ξ )γ r2√grr

f + 2

[
�r − (1 − χc)Rt

N

]
(13)

and

d

dr
= −

N

[
γ 2

v

(
dv

dr

)
+ 1

A
dA
dr

+ 1

grr r2
− (2−ξ )(1−χc)γRt

2
√

grr

]
.

(14)

3 ME T H O D O F O B TA I N I N G SO L U T I O N S

Jet solutions are obtained by integrating equations (13) and (14).
The jet base is close to the horizon. As the jet is hot and slow
near the base, it is subsonic. In this article, the jet base is generally
considered to be at r = rb = 3 until otherwise specified. At large
distances from the BH, the jet moves with very high speed and is
cold and hence supersonic. In other words, the jets are transonic, i.e.
the subsonic branch of the solution passes on to the supersonic one
through the sonic point (r = rc), i.e. at rc, vc = ac. Here the suffix
‘c’ denotes quantities at the sonic point. Further, at rc, dv/dr → 0/0,
which enables us to write down the other sonic-point condition as[
a2

(
grr r2

A
dA
dr

+ 1

)
−1 + (2−ξ )γ r2√grr

f + 2

×
{
�r− (1−χc)Rt

N

}]
r=rc

= 0. (15)

Here, dv/dr|c is calculated by employing L’Hospital’s rule at rc and
solving the resulting quadratic equation for dv/dr|c. The resulting
quadratic equation can admit a complex root, leading to spiral-type
sonic points, or two real roots. Solutions with two real roots but with

Figure 2. Distribution of radiative moments R0 (solid), R1 (dotted) and R2

(dashed) for (a) � = 1.0 and (b) � = 1.5 along the jet length r.

opposite signs are called ‘X’ or ‘saddle’-type sonic points, while
real roots with the same sign produce a nodal-type sonic point. The
jet solutions passing through X-type sonic points are physical so,
for a given set of flow variables at the jet base, a unique solution
will pass through the sonic point determined by the entropy Ṁ of
the flow. For given values of inner boundary condition, that is, at
the jet base rb, vb and b, we integrate equations (13) and (14),
while checking for the sonic-point conditions (equations 15). A set
of rb, ∼vb and b corresponds to a particular value of the constant
of motion E. Various combinations of vb and b can give rise to
the same E, but only a particular value of Ṁ corresponding to the
same E will admit a sonic point and, following the second law of
thermodynamics, Ṁ of the transonic solution is maximum for all
global solutions. We iterate till the sonic point is obtained and once
it is obtained we continue to integrate outwards, starting from the
sonic point using Runge–Kutta’s fourth-order method. This process
gives us values of v and  along r. All other variables, such as a, �,
N, h, Et and E, are obtained from these two variables. As explained
in detail in VC18b, we check for shock transition by conserving
fluxes at each point, namely mass flux, momentum flux and energy
flux.

4 A NA LY SI S AND RESULTS

4.1 Nature of the radiation field

We calculate radiative moments as explained in Appendix B. In
Fig. 2, we show the intensity of the radiation field along r by plotting
the radiative energy density R0 (solid), r component of radiative flux
R1 (dotted) and rr component of radiative pressure R2 (dashed) for
various disc luminosities of the accretion disc, � = 1.0 and 1.5
in panels (a) and (b), respectively. These luminosities correspond
to accretion rates ṁ = 4.62 and 4.89, respectively. The radiation
field gets weaker as the luminosity decreases. Radiation flux R1 is
negative inside the funnel of the corona, which adds to the radiation
drag term and resists the jet flow, while the flux is positive above the
corona, hence it accelerates the jet, so radiation can accelerate or
decelerate and also heats up the flow. We will explain these effects
further in the next section.

4.2 Flow variables at sonic points

As shown before, sonic-point analysis is an important aspect of
obtaining flow solutions, because at the sonic-point flow speed v

equals sound speed a, which is essentially a mathematical boundary.
Each sonic point corresponds to certain E or, equivalently, corre-
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Compton-driven relativistic jets 4207

Figure 3. Variation of E with rc for � = 3.0 (long-dashed) � = 2.0 (solid),
� = 1.0 (dotted) and � = 0.5 (dashed).

sponds to certain jet base parameters like vb and b. In Fig. 3, we
plot E, for e− − p+ (ξ = 1) flow for different disc luminosities � =
3.0 (long dashed), 2.0 (solid), 1.0 (dotted) and 0.5 (dashed). The
evolution of E indicates that higher � makes the flow more energetic
and E becomes non-monotonic. There are a couple of interesting
features that separate the E − rc curve of this article from our pre-
vious ones (VC17; Vyas & Chattopadhyay 2018a; VC18b); these
are as follows.

(i) E dips below one.
(ii) E dips up to a certain minimum value Emin and then another

branch is obtained. Although the rc at Emin is different for different
luminosity, the energy is exactly the same.

In the next section, this phenomenon is discussed in detail.

4.3 General pattern of solutions and significance of Compton
scattering

As E is a constant of motion, so Fig. 3 contains information about all
types of jet solution. Each point on the figure corresponds to certain
base variables vb and b, corresponding to which there is a transonic
solution. The solutions can be classified into three categories. To
show their classification, we again plot the E − rc curve for � = 1
in Fig. 4. Three types of jet solution are named: A, B and C. The
collective information for the base variables lies in the expression for
E at the base, that is E(rb) = Eb = −hbutb = hb

√
grr

b γb. In other
words, the radiative contribution enters the Bernoulli expression
as the jet propagates along r (equation 12). Interestingly, energy
exchange between the jet and radiation allows even initially bound
matter (E < 1) to be driven as transonic jets. This is a significantly
different result in comparison with previous studies in the elastic
scattering limit, where we were restricted to E > 1 for any transonic
solution (see figure 6a of VC18b). We obtained this phenomenon
previously in non-relativistic studies (Chattopadhyay & Chakrabarti
2000a,b), but such solutions were not systematically explored and
the heating term was an ad hoc one.

Class A (w–x, dotted) and B (x–y, solid) in Fig. 4 represent
sonic-point properties for jets starting with the same base (rb). Type
C (z–y, dashed) represents sonic-point properties of jets with the
same � but with rb > 3. Class A represents high-energy jets and
class B bound matter being driven off as jets starting with the same

Figure 4. Variation of E with rc for � = 1.0. Depending upon nature of the
jet base, the solutions are classified into three types: A (dotted), B (solid)
and C type (dashed). These are marked in the figure.

Figure 5. Nature of A-type solutions. Variation of (a) jet three-velocity
v and (b) temperature T with r for E = 1.35 and � = 1.0. The solid curve
incorporates Compton scattering, while the dashed curve considers Thomson
scattering. (c) Variation of v for � = 3.0, E = 1.35.

rb. Neither class B nor class C was obtained in the elastic scattering
regime, i.e. with bound matter being driven out as jets. In addition,
class C solutions are jet solutions of bound matter that is suspended
at some height above the disc, while, for the B-class jets, rb = 3
is similar to class A. At rb = 3, the minimum energy of matter is
obtained when vb → 0 and b 	 1, i. e.

Emin = √
grr ; i.e. γb → 1 and hb → 1. (16)

At Emin, B- and C-class solutions merge. It is precisely for this
reason that E − rc reaches up to Emin for any � (Figs 3 and 4). In
the following, we discuss each class of solution separately.

4.4 A-type solutions: hot and fast jet base

In Fig. 5(a) and (b), we plot jet velocity v and temperature  as
functions of r for E = 1.35 and � = 1.0. The jet in the Compton-
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4208 M. K. Vyas and I. Chattopadhyay

Figure 6. Nature of B-type solutions. Variation of (a) v and (b) T with r
for E = 0.83 and � = 1.0 (solid) and � = 0 (dashed).

scattering regime has base velocity vb = 0.14 and base temperature
Tb ∼ 2 × 1012 K. The sonic point is at r = 5.97, while terminal speed
vt = 0.69. Here, terminal speeds are defined to be vt = v|r→106 .
To show the effect of Compton scattering on the jet, we overplot
the jet solution in the Compton-scattering regime (solid) with that
in the Thomson-scattering one (dashed). The jet solution in the
Thomson-scattering regime is achieved in the present formalism by
considering χ c = 1 and these jet solutions are similar to the ones
obtained by VKMC15 and VC18b. The terminal speed of the jet
in the Thomson-scattering regime is only 0.52. It is clear that the
Compton-driven jet is 33 per cent faster compared with a jet under
the Thomson-scattering regime. The temperature profile of the jet
in the elastic scattering regime decreases monotonically, while the
temperature of the Compton jet is not monotonic, because the jet is
heated up at around r ∼ 20, where radiative moments peak (Fig. 2b).
It cools down again monotonically with r, as the radiation field gets
weaker further away. In Fig. 5(c), we plot v as a function of r of
a jet with the same energy, i.e. E = 1.35; however, it is acted on
by radiation characterized by � = 3. For these parameters, the jet
accelerates and becomes transonic at the inner sonic point at rc =
5.3 and goes through shock transition under the impact of negative
flux inside the funnel at r = 6.3. Through a shock discontinuity, the
jet jumps from the supersonic branch to the subsonic branch and
then again accelerates and becomes transonic at rc = 8.62, reaching
a terminal speed vt = 0.86. The origin of generation of the shock,
as well as the existence of multiple sonic points, lies in the radiation
drag and negative flux inside the funnel (Fig. 2b dotted), which
collectively resist the jet and form multiple sonic points. The details
of the calculation of shock conditions are described in Vyas &
Chattopadhyay (2018a; VC18b) and are not repeated here.

4.5 B-type solutions: hot and slow jet base

Class B solutions are bound solutions close to the horizon, i.e. E
< 1 extending up to infinity driven by the radiation field (Fig. 4,
solid). These solutions are characterized by low base speeds but
high base temperature. In other words, the kinetic component of Eb

is ineffective (γ b ∼ 1). The thermal component is high (hb > 1) but
dominated by gravity, E ∼ hb

√
grr

b < 1. Hence thermal driving by
itself is unable to push matter outward (dashed) and it folds back
on to the horizon, while the radiatively driven flow is transonic and
escapes the gravity of the black hole. Matter is pushed outward
collectively by radiation momentum deposition and energy transfer
on to the jet. As these solutions are absent in the elastic scattering
regime, Compton scattering is essential for driving jets with E < 1.
We choose E = 0.83 and plot v and T with r in Fig. 6(a) and (b),
respectively, for the choice of � = 1 (solid) and compare this with
a thermally driven flow (i.e. a flow with � = 0: dashed). At rb =

Figure 7. Minimum �, i.e. �m, as a function of E for B-type solutions.

Figure 8. Nature of C-type solutions. Variation of (b) v and (c) T with r for
E = 0.63 (solid) and E = 0.92 (dashed) for � = 1.0.

3, vb = 0.003 and Tb ∼ 7 × 1011 K for both flows, the radiatively
driven jet (solid) flows to infinity through a sonic point rc = 13.54
and achieves a terminal speed vt ∼ 0.61, but the thermally driven
flow cannot expand to infinity against the gravity of the central black
hole. This brings us to the question of what is the minimum disc
luminosity required to blow a jet starting with specific energy E < 1.
For E > 1 (i.e. A-type) jets, a transonic solution is guaranteed even
for � = 0. As has been shown in Fig. 6(a) and (b) for B-type flows,
a jet occurs if and only if � > 0. In Fig. 7, we plot the minimum
disc luminosity �m required to blow a transonic jet for B-type jets,
i.e. as a function of E. For example, Fig. 7 shows that we can have
transonic jet for E < 0.75 if the disc luminosity is � > 1.0.

4.6 C-type solutions: cold and very slow jet base

Solutions corresponding to the dashed line in the E − rc plot (Fig. 4)
attract special attention, as the jets represented by these solutions
are characterized by E < 1 but, additionally, the bases of the jets
are different and rb > 3. Therefore, for a given rb and E, there
is a maximum � for which vb → 0, so one can find jet solutions
with the same E and � if rb is increased and these later solutions
are the so-called C-type. Typically, the thermal (Tb < < 1010) and
kinetic (vb ∼ 0) components of E at the jet base are very low. In
Fig. 8(a)–(b), we plot v and T with r for E = 0.63 (solid) and
E = 0.92 (dashed) and powered by disc radiation of � = 1.0. Both
the jets are characterized by single sonic points (star marks) and
the terminal speeds attained by both jets are around vt ∼ 0.6. The
base temperature and three-velocity are non-relativistic for both
jets. The temperature profile of both jets rises from Tb ∼ 107 K to
3.7 × 1011 K (solid) and 2 × 1011 K (dashed) because of Compton
heating. The base of the E = 0.63 jet is at rb � 3, but for E =
0.92 it is at rb = 12, i.e. quite different, though they generate
somewhat similar terminal quantities. The mechanism of heating
and cooling can be understood if we look at equation (14). The first
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Compton-driven relativistic jets 4209

Figure 9. Variation of (a) � and (b) Ṁ, (c) Et and (d) E for E = 0.63 (solid)
and � = 1.0.

three terms inside the square bracket are positive and responsible
for the decrease in jet temperature due to expansion. The last term
in the bracket shows radiative heating. For e−–p+ flow, the heating
term can be written as

Q+ ≈ (� − 1)(1 − χc)

[
grrR0

v
+ vR2

grr
− 2R1

]
. (17)

At the base, b ≈ vb ≈ small, moreover R1 < 0 inside the fun-
nel, i.e. all the terms inside the bracket are positive and collectively
heat up the jet near the base. In addition, since vb ∼small, then the
first term within the parentheses of equation (17) is dominant and
is responsible for the sharp rise in temperature at r ∼ rb. Interest-
ingly, there is a second hump in the T profile of the jet. Within one
Schwarzschild radius from the jet base, v increases by more than
four orders of magnitude (∼10−5˜ → 0.1), so the first term tends to
decrease, while the second term vR2/g

rr starts to become impor-
tant. The shape of the temperature profile is influenced by the rela-
tive strength of these two terms within the first few Schwarzschild
radii from the base. If one studies the distribution of radiative mo-
ments carefully (Fig. 2a and b), then around 10 < r < 20 the flux
becomes positive, R1 > 0, beyond which the third term 2R1 starts
to dominate over both the first and second terms in parentheses in
equation (17). This leads to a decrease in temperature and even-
tually the second peak. The first hump is therefore due to the first
term in parentheses and the second is due to the interplay of all
three terms, especially second and the third, although, for larger r,
Compton heating is not important and the jet cools down due to
expansion.

In Fig. 9(a)–(b), we plot the variation of � and Ṁ corresponding
to parameters of the jet corresponding to E = 0.63 in Fig. 8. Variation
of � delivers similar information, in that the plasma is cold and non-
relativistic at the base as well as far away (r ∼ 105), but radiation
makes it relativistic and hot in between. Variation of entropy depicts
the non-adiabatic nature of the jet, as Ṁ increases by around 10
orders of magnitude. As expected, Et (Fig. 9c) evolves and increases
due to the impact of radiation. Starting from Etb = 0.63 (<1) at the
base, it reaches at Et ∼ 1.206 (>1), while the generalized relativistic
Bernoulli parameter E remains conserved and is shown to be a
constant of motion (Fig. 9d).

Figure 10. (a) Velocity profiles for various luminosities for C-type solutions
for e−−p+ composition. Corresponding terminal speeds (vt) are plotted in
(b). (c) Variation of T with r for various luminosities. (d) Lorentz factor (γ t)
as a function of � (solid). In panels (a) and (c), different curves are for � =
3.0 (solid), � = 1.0 (dotted) and � = 0.5 (dashed), keeping E = 0.63.

4.7 Effect of luminosity on C-type jet

We keep the same E = 0.63 and plot velocity profiles for � =
3.0 (solid), � = 1.0 (dotted) and � = 0.5 (dashed) in Fig. 10(a).
As expected, greater acceleration is observed as the radiation field
becomes more intense. To estimate the qualitative magnitude of
acceleration and effect of �, we plot vT with � for E = 0.63 in
Fig. 10(b). Terminal speeds range from vt = 0.53 to vt = 0.82 as �

goes from 0.5 to 3.0.
The corresponding temperature profiles for these luminosities are

shown in Fig. 10(c). Out of the two peaks, the first one is weakly
dependent on �, because it is mostly dictated by vb →small (i.e.
the first term in parentheses on the right-hand side of equation 17),
while the second one depends on �, because the second peak is born
through the combined effect of all the moments.

4.8 Effect of composition on jet dynamics

Composition of relativistic jets is a much debated topic. Jets are
believed to be dominated either by baryons (e−−p+ plasma) or
by leptons (dominated by e−−e+). We have considered the rela-
tivistic EoS, which takes care of the composition of the plasma
through ξ (Appendix A). It permits us to study the jet dynamics
with variation of ξ . To study the effect of composition, we gen-
erate solutions by varying ξ for given values of E and �. We plot
three-velocity v in Fig. 11(a) and temperature T in Fig. 11(b) for
ξ = 1.0 (solid) and ξ = 0.05 (dotted) for E = 0.63 and � = 1.0. As
ξ decreases, the lepton fraction in the fluid composition increases,
making the fluid lighter, hence the jet, under radiative accelera-
tion, becomes faster. Corresponding terminal speeds are plotted in
Fig. 11(c); these go up to 0.998 as the value of ξ drops to 0.05. In
terms of terminal Lorentz factors γ t of the jets (Fig. 11d), for very
low ξ (∼0.05), γ t comfortably reaches up to 10. The temperature
profiles of a baryon-dominated jet (solid) are mostly similar to those
of lepton-dominated jets (dotted). For thermally driven jets or jets
driven by radiation in the elastic scattering regime, the temperature
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4210 M. K. Vyas and I. Chattopadhyay

Figure 11. (a) v and (b) T profiles as a function of r for ξ = 0.05 (dotted)
and ξ = 1.00 (solid). (c) vt and (d) γ t as a function of ξ . For all curves, E =
0.63 and � = 1.0.

Figure 12. (a, b) Terminal Lorentz factor γ t and (c, d) terminal speed vt as
a function of E. The composition of the jets is (a, c) ξ = 1 and (b, d) ξ =
0.05. The quantities in the Compton-scattering regime (solid) are compared
with those in the Thomson-scattering regime (dotted) in panels (a) and (c).
All the plots are for � = 1.0.

of baryon-dominated flows is greater than that of lepton-dominated
ones; however, in the Compton-scattering regime, the energy trans-
ferred by radiation is more effective for flows with lower ξ (presence
of ρe in the right-hand side of equation 8).

We plot γ t and vt with E for ξ = 1.0 (Fig. 12 a and c) and ξ =
0.05 (dashed; Fig. 12b and d). The curves are plotted for � = 1.0.
For e−−p+ jets, we compare terminal quantities in the current ar-
ticle (solid) with those obtained in the Thomson-scattering regime
(dotted, similar to VC18b), which reasserts the fact that Comp-
ton scattering accelerates jets more effectively than the Thomson
regime. Further, as there are no solutions for E < 1 in the Thomson-
scattering regime, the terminal speeds approach very low values as
E → 1. However, Compton-driven jets maintain vt > 0.6 even for E

< 1. This lower limit of vt or γ t is highly relativistic (vt > 0.99) for
lepton-dominated jets (dashed). It may be noted that Fig. 11(a)–(d)
is for C-type jets, but Fig. 12 represents all types of jet for given jet
and radiative parameters.

5 D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

In this article, we have studied radiatively driven relativistic jets in
the Compton-scattering regime and curved space–time. The ther-
modynamics of the jet is described by a relativistic EoS. This work
is a continuation of our previous efforts, where we studied the in-
teraction between radiation and jet matter in the elastic scattering
regime. In this article, we show that radiative driving in the Compton
regime is significantly more effective than in the elastic scattering
regime. In the Compton regime, both energy and momentum are
transferred to the jet from the radiation field, so the radiation not
only accelerates the flow but also increases its temperature. Conse-
quently, we identified three classes or types of jet and named them
A, B and C. Class A jets were those that are launched with very
high temperatures and high speeds at the base with E > 1, class
B are those that start with relatively lower speeds and tempera-
tures and class C are those that have very low base temperatures
and very small base speeds. Both B- and C-type jets have E < 1.
This is because radiation transfers energy to matter, so that flows
with E < 1 can also be ejected. In the scattering regime, at such E,
the jet matter ejected outwards would actually fall back to the BH.
The velocity distribution would almost overlap with the thermal
one (dashed in Fig. 6a). For E < 1, the terminal Lorentz factors
obtained for super-Eddington luminosities are below 2 for e−−p+

jets, but they are sufficiently high and reach beyond 10 for lepton-
dominated jets. We reiterate that our previous articles (VKMC15;
Vyas & Chattopadhyay 2018a; VC18b) had no counterpart of B-
and C-type jets, because in the Thomson-scattering regime a tran-
sonic jet always has E > 1.

Astrophysical jets are transonic, fast and collimated and hence
an assumption of conical or spherical jets is very common in the-
oretical investigations. If the jet was assumed to be adiabatic, then
the assumption of a spherical jet is generally a fair one. However, in
the Compton regime, radiation transfers energy to the jet, thereby
heating it, so there are grounds for apprehension as to whether lat-
eral expansion of the jet could destroy the spherical symmetry. In
Appendix C, we show that, for transonic jets, the lateral expansion
is much smaller than the radial expansion. In Fig. C1 we plot K
as a function of r, where K = ar/ax or the ratio between radial
acceleration and the lateral pressure gradient term. It is clear from
the figure that K >a few, even in the subsonic region.

Radiatively driven jets possess multiple sonic points and internal
shocks in a certain range of parameters. These internal shocks may
be produced due to various factors. We showed in VC17 that a
non-radial cross-section may harbour internal shocks. In Vyas &
Chattopadhyay (2018a) and VC18b, we showed that, in the presence
of radiation, even radial jets may undergo shock transitions. The
shocks obtained in this article have similar features. A number of
processes that give rise to internal shocks give theoretical support
and strengthen the proposals that assumed internal shocks to explain
various observed features of jets (Blandford & Königl 1979; Laurent
et al. 2011), mainly the high-energy flux (GeV to TeV) of the
radiation spectrum.

In this article, we have obtained jets with a variety of terminal
speeds, ranging from mildly relativistic to highly relativistic. While
jets in microquasars do show a range of terminal speeds, it is as-
sumed that astrophysical jets are relativistic. Bulk speeds of the
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Compton-driven relativistic jets 4211

jets are inferred from crude observational methods. However, the
presence of asymmetry in the luminosity of a jet and its counterpart
puts a better constraint on the estimation of Lorentz factors of jets
(Wardle & Aaron 1997; Harris & Krawczynski 2006). The range
of terminal Lorentz factors obtained in this article is similar to the
ranges obtained for Lorentz factors in both X-ray binaries and AGN
(Miller et al. 2006).

Quantitatively, we can conclude that, choosing a jet base at rb =
3, e−−p+ jets can be accelerated to a minimum of of vt ∼ 0.22 for
disc luminosity � = 0.1. For the same rb and � of lepton-dominated
jets (ξ = 0.1), the minimum terminal speed is vt ∼ 0.78. Of course,
for luminous discs (� = 1), terminal speeds for hot e−−p+ jets can
go up to vt > 0.9, while for lepton-dominated jets terminal Lorentz
factors are ultrarelativistic.
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APPENDI X A : R ELATI VI STI C EQUATI O N
OF STATE

At relativistic temperatures, the adiabatic index (�) depends upon
temperature. The value of � ranges from 5/3 to 4/3 as the flow goes
from non-relativistic temperatures to relativistic temperatures. We
consider the EoS for multi-species, relativistic flow proposed by
Chattopadhyay (2008) and Chattopadhyay & Ryu (2009), which is
a close approximation of the exact relativistic EoS (Chandrasekhar
1938; Synge 1957; VKMC15). The EoS is given as

e = ne−mec
2f , in physical dimensions, (A1)

where me and ne− are the rest mass of the electron and electron
number density, respectively. f is a dimensionless quantity given
by

f = (2 − ξ )

[
1 + 

(
9 + 3

3 + 2

)]
+ ξ

[
1

η
+ 

(
9 + 3/η

3 + 2/η

)]
.

(A2)

Here,  = kT/(mec2) is dimensionless temperature (T) and k is the
Boltzmann constant. ξ (= np+/ne− ) is the ratio of number densities
of protons and electrons. η(= me/mp+ ) is the mass ratio of electrons
and protons. The expressions for �, N, a and h (in geometric units)
are given by

N = 1

2

df

d
,� = 1 + 1

N
, a2 = �p

e + p
= 2�

f + 2
, h = f + 2

τ
.(A3)

Here τ is a function of composition and is defined as τ = 2 − ξ +
ξ /η.

APPENDI X B: RADI ATI ON FI ELD FROM
ACCRETI ON D I SC AND ASSOCI ATED
R A D I AT I O N PA R A M E T E R S

B1 Estimating approximate accretion-disc variables

Here, Uμ denotes the four-velocity components in the accretion disc
and v ≡ (ϑx, 0, ϑφ) the corresponding three-velocity components
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with x, θ , φ the spatial coordinates. ϑ = ϑx/

√
(1 − ϑ2

φ) is defined as

the radial component of three-velocity measured by a local observer
rotating along the disc surface. We can show the velocity distribution
of the outer disc and the corona in the following compact form [see
Appendix A of VKMC15]:

ϑi =
[

1 − (x − 2)x2

{x3 − [(x − 2)λ2]}U 2
t |x0i

]1/2

. (B1)

Here, the suffix i represents variables associated with the corona
(i.e. i=C) and the outer disc (i.e. i=D). Ut |x0i is the covariant time
component of Uμ at the outer boundary of the respective disc com-
ponents, which are x0i = xsh and x0i = x0 for the corona and the
outer disc, respectively. At x0, [ϑD]x0 ≈ 0 and it grows as it falls
inwards.

The distribution of temperature can be obtained as (VKMC15)

i = 0

(
Ux

0 x0iH0

Ux
i xHi

)�−1

. (B2)

The compression ratio Rc is defined as

Rc = Ur
−/Ur

+, (B3)

where Rc is approximated from the results of Kumar & Chattopad-
hyay (2017):

Rc = 2.46 − 2.12 × 10−3xsh − 4.72 × 10−4x2
sh

+ 5.98 × 10−6x3
sh − 2.08 × 10−8x4

sh. (B4)

Similarly, the temperature increases by the same fraction Rc, giving
the outer boundary velocity and temperature for the corona; using
this in equations (B1) and (B2), ϑC and C are obtained.

Moreover, VKMC15 proposed a relation between xsh and accre-
tion rate ṁ, which, after converting into the current unit system,
becomes

xsh = 87.402 − 28.193ṁ + 3.125ṁ2 − 0.115ṁ3. (B5)

xsh is in geometric units, while ṁ is the mass accretion rate in
Eddington units (Eddington accretion rate is defined as ≡ ṀEdd =
1.4 × 1017MB/M� g s−1). To specify ϑ i and i at x, the local height
Hi is also required. Following numerical simulations (Das et al.
2014; Lee et al. 2016), we define H0 = 0.4Hsh + tan θDx0. Supplying
the values of all parameters required, [ϑD]x0 , ρ0, H0 and ṁ at the
outer disc boundary, x0, velocity, temperature and density values at
all xi, along with the location of xsh, are obtained. The accretion
parameters considered in this article are shown in Table B1.

Table B1. Disc parameters.

λ x0 [ϑD]x0 [D]x0 θD H∗ d0

3.6 20000rS 0.001 0.03 78.5o 40 0.4Hsh

B2 Radiative intensity and luminosity from the accretion flow

Assuming a stochastic magnetic field in the accretion disc and con-
sidering that it is in partial equipartition with the gas pressure, we
can assume that the ratio between the magnetic pressure (pmag) and
the gas pressure (pgas) is a constant, β, i.e. pmag = B2/8π = βpgas =
βnkT. The outer disc emits through synchrotron and bremsstrahlung
processes, while the corona additionally emits through the inverse-
Compton process along with these. The frequency-integrated, lo-
cal intensity for the outer disc is (Kumar & Chattopadhyay 2014;

VKMC15)

Ĩi0 = Ĩsyn + Ĩbrem

=
[

16

3

e2

c

(
eBi

mec

)2

2
i ni + 1.4 × 10−27n2

i gbc

√
ime

k

]

× (d0 sin θi + x cos θi)

3
erg cm−2 s−1. (B6)

Here, x, ni, i, θi , gb(= 1 + 1.781.34
i ) and Bi are the radial dis-

tance, electron number density, local dimensionless temperature,
semi-vertical angle, relativistic Gaunt factor and magnetic field ,re-
spectively, for both disc components. The factor multiplied outside
the square brackets converts the emissivity (erg cm−3 s−1) into in-
tensity (erg cm−2 s−1). Now, the emitted radiation from the outer
disc is inverse-Comptonized within the disc; adding this, the spe-
cific intensity becomes (Pietrini & Krolik 1995; Buchler & Yueh
1976)

ĨD = ĨD0

(
1 + 4De + 162

De

)τr+(τ2
r /3)

. (B7)

Here, De is the dimensionless electron temperature of the outer
disc component and τ r is the optical depth, which depends on r and
is found to be

τr = K0ṁ

urrh
, (B8)

where

K0 = 1.44 × 1017σTc

4me(1 + 1/η)GπM�
.

The outer disc luminosity is obtained by integrating ĨD over the
whole disc surface, i.e.

LD = 2
∫ x0

xsh

∫ 2π

0
ĨDr

(
1 − 2

r

)2

cosec2θD dφ dx. (B9)

Now, a fraction of radiation emitted from the outer disc falls on to
the corona and adds to the radiation emitted by it and is calculated
to be

Lf
D = 2

∫ x0

xsh

∫ 2π

0
ĨDr

(
1 − 2

r

)2 1

π
tan−1

(xsh

x

)

× tan−1

(
Hsh

x

)
cosec2θD dφ dx.

(B10)

Assuming that this radiation falls on to the corona homogeneously,
we can calculate the additional specific intensity of the corona taking
this radiation into account as

ĨCf
0

= Lf
D/AC. (B11)

Including this radiation, along with local inverse Comptonization
inside the corona, the coronal luminosity is obtained as

LC = 2
∫ xsh

xii

∫ 2π

0

[
ĨC0 + ĨCf

0

] (
1 + 4Ce + 162

Ce

)τr+(τ2
r /3)

× r

(
1 − 2

r

)2

cosec2θC dφ dx. (B12)

Similarly, here Ce is the dimensionless electron temperature of the
corona.

The above luminosities can be presented in units of LEdd(≡
1.38 × 1038MB/M� erg s−1) as �i = Li/LEdd.

Considering the corona to be compact and having an isotropic
distribution of radiation, we can formulate a relation for the specific
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intensity of the corona in terms of LC as

ĨC = LC/πAC = �CLEdd/πAC (erg cm−2 s−1). (B13)

B3 Radiative moments

B3.1 Relativistic transformation of intensities from various disc
components

To solve the EoMs of the jet, we require information about the radi-
ation field, governed by radiative moments on the jet axis. To obtain
the radiative moments, we need to compute specific intensities from
the outer disc as well as the corona. Using the expressions for veloc-
ity (B1) and temperature (B2) from both the disc components, we
compute the radiative intensity (B6, B7, B11) in the local rest frame
of the disc, which is transformed into the curved frame, following
special and general relativistic transformations, as

Ii = Ĩi

γ 4
i

[
1 + ϑj lj

]4

i

(
1 − 2

x

)2

, (B14)

where Ĩi is the frequency-integrated specific intensity in the local
rest frame of the disc, ϑ j is the jth component of three-velocity, γ i

being the Lorentz factor, and l j are the direction cosines. The square
of the redshift factor (1 − 2/x)2 reduces radiation intensity close to
the BH (Beloborodov 2002).

B3.2 Calculation of radiative moments in curved space–time

Zeroth, first and second moments of specific intensity (i.e.∫
I d	,

∫
I lj d	, ˜

∫
Il jlk d	, respectively) contain all the in-

formation about the radiation field. There are 10 independent com-
ponents (Mihalas & Mihalas 1984; Chattopadhyay 2005), but, to
study a conical narrow jet passing through a radiation field, only
three of these are dynamically important.

The radiative moments (R0, R1 and R2) can be written in a
compact form given by (Vyas & Chattopadhyay 2018a)

Rni =
∫ xi0

xii

∫ 2π

0

(
1 − 2

x

)3
Ĩi

γ 4
i

[
1 + vj lj

]4

i

×
[

(r − x cos θi)√
[(r − x cos θi)2 + x2 sin θ2

i ]

(
1 − 2

x

)
+ 2

x

]n

× rx dφ dx

[(r − x cos θi)2 + x2 sin θ2
i ]3/2

. (B15)

Here i → C and D signifies the contributions from the corona and
outer disc, respectively. The integration is performed over x and
φ, with the limits of integration being from xii (inner edge) to xi0

(outer edge) of the respective disc component and the angular cir-
cumference of the disc from 0 to 2π . The index n = 0, 1, 2 is for
R0, R1 and R2, which are the radiative energy density and radiative
flux along r and rr components of the radiative pressure, respec-
tively. θ is the semi-vertical angle of the respective disc component
(Fig. 1).

γ 4
i

[
1 + vj l

j
]4

i
in the denominator inside the integration repre-

sents a special relativistic transformation of specific intensity (Chat-
topadhyay 2005), while 2/x accounts for the transformation of Ĩi ,
lj and solid angle in curved space–time. These transformations are
taken from methods developed by Beloborodov (2002) and Bini
et al. (2015) and were used by Vyas & Chattopadhyay (2018a).

Figure C1. Variation of K with r for � = 1, E = 1.35.

As we have two disc components, corona and outer disc, the total
moments are obtained as

Rn = RnC + RnD. (B16)

The x limits for the corona are xCi = 2, xC0 = xsh. Following the
shading effect induced by the corona as it blocks a certain amount
of radiation from the outer disc, the innermost edge seen from r is
given by

xDi = r − d0

(r − Hsh)/xsh + cot θC
.

It is clear from above that, as r → ∞, xDi → xsh. Further, up to
some r = rlim, radiation from the outer disc will not reach the jet
axis. This limiting distance is obtained as

rlim = x0Hsh − H0xsh

x0 − xsh
. (B17)

A PPEN D IX C : O N VA LID IT Y O F TH E
SPHERI CAL C RO SS-SECTI ON O F THE JET

As radiation transfers energy to the jet matter, the jet heats up,
increasing the pressure of the flow. The pressure gradient force,
which is isotropic in the local frame, might compete with the radial
expansion of the flow and the conical flow geometry of the jet may
be compromised.

To justify this approximation, here we show that the outward
acceleration of the jet is much more dominant over lateral expansion.

The jet acceleration along r is given by ar (right-hand side of
equation 5):

ar = −
(

1 − 2

r
+ urur

)
1

e + p

dp

dr
+ ρe

√
grrγ 3

(e + p)
�r . (C1)

Let x = r sin α be the horizontal radius of the jet boundary and α

the opening half-angle. Since α is small, therefore

dp

dx
≈ dp

dr

δr

δx
.
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Using the above expression, the horizontal pressure-gradient term
can be written as

dp

dx
∼ dp

dr

δr

δx
= (1 − cos α)

sin α

dp

dr
. (C2)

This gradient of pressure from the jet axis to the jet wall leads
to thermal expansion of the jet. Hence there is a net acceleration
component of the jet away from the jet axis (call it ax), which can
be written as

ax= −
(

1 − 2

r

)
1

e + p

dp

dx
= −

(
1 − 2

r

)
1

e + p

(1 − cos α)

sin α

dp

dr
.

(C3)

Now, to compare ar and ax, we define

K = ar

ax

. (C4)

If K � 1, then the assumption of conical flow geometry will not
hold. To analyse this, we choose α = 10◦ and take an example of an
A-type solution (Fig. 5), for � = 1 and E = 1.35, and plot K. The
variation of K is shown in Fig. C1.

We see that K remains significantly greater than 1 throughout the
jet extent and increases with r. Hence we can safely state that the
assumption of conical flow geometry is a reasonable one.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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