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ABSTRACT

A detailed study of magnetized astrophysical flows has been carried

out in the magnetohydrodynamic and special relativistic magneto-

hydrodynamic regime. We have considered the thermodynamics of

the flow to be described with a fixed as well as, a variable adiabatic

index equation of state (EoS). As examples of MHD flow, we have

studied (i) funnel accretion onto neutron stars and white dwarfs,

(ii) magnetized equatorial outflows from around a compact magne-

tized star, and (iii) magnetized relativistic outflows about the axis

of symmetry from compact objects like black holes.

Possibly for the first time, we obtained semi-analytical magnetized

accretion solutions onto compact objects with a hard surfaces such

as neutron stars which satisfies the inner boundary condition, where

the accreting matter gently settles onto the surface of the star. We

also compared these solutions in Newtonian & pseudo-Newtonian

regime. We assumed that neutron star has a strong dipole magnetic

field whose dipole moment is aligned along the rotation axis of the

star. We have included cooling processes like bremsstrahlung and cy-

clotron. Depending on the Bernoulli parameter of the flow and the

rotation period of the star, we obtain various solutions which may

possess a single sonic point or multiple sonic points. We have also

studied the dependence of accretion solutions on plasma composi-

tions. All types of accretion solutions undergo a very strong primary

shock which forms near the star surface. The strength of the pri-

mary shock increases with the rotation period of the star, but the
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shock location is weakly dependent on the period. Due to the pres-

ence of multiple sonic points, we can find a secondary shock within

a very small region of the parameter space but this shock is weak

and the shock location, the shock strength, and the compression ra-

tio depends significantly on the rotation period of the star and the

total energy of the flow. We also calculate the total luminosity of

the magnetized accretion solution which is in good agreement with

observations. We have also studied a case of white dwarf where our

results match with the observations. We have found that cyclotron

cooling and bremsstrahlung cooling are necessary to obtain a consis-

tent accretion solution i.e., a solution which connects the flow from

the accretion disk to the star surface.

We studied the effect of plasma composition on the equatorial wind

outflow with variable adiabatic index EoS. We have found that ter-

minal velocity depends upon the plasma composition. Lepton domi-

nated winds with higher values of Bernoulli parameter have high ter-

minal speeds. We have also studied solutions for different energies,

angular momenta and in different gravity i.e., Newtonian & pseudo-

Newtonian potential. For the same values of the Bernoulli parameter

(energy) and the total angular momentum, a wind in strong gravity

is more accelerated, compared to wind in Newtonian gravity. We

showed that flow variables like the radial, azimuthal velocity compo-

nents, temperature, etc all depend on the composition of the flow.

We continue our outflow study in case of collimated outflows or

jets in special relativistic magnetohydrodynamic regime with vari-

able adiabatic index EoS. We found that plasma composition mainly
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affects the velocity and the temperature of the jet but the collimation

of jet and fast critical point location appears to have no dependence

on plasma composition. We explore all outflow solutions and found

that the solution depends on the current distribution parameter, the

magnetization parameter, the inclination angle of field lines with re-

spect to the disk plane, and Alfvèn point radius. Fast point location

can be related to collimation shock location because the super-fast

flow is causally disconnected from the flow which is behind.
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ē Energy density

T Temperature

Θ Dimensionless temperature (≡ κBT/me−c
2)

n Number density

ne− Number density of electron

np+ Number density of proton

ξ Composition parameter (≡ ne−/np+)

η Electron to proton mass ratio (≡ me−/mp+)

Γ Adiabatic index

N Polytropic index

E Total energy

B Bernoulli parameter

L Total angular momentum

Ω Angular velocity

P Rotation period of star

vp Polodial velocity

vφ Azimuthal velocity

r Radial distance

rc Critical point radius

xxv



rco Co-rotation radius (≡ (GM◦/Ω
2)1/3)

rsh Shock location

rg Schwarzschild radius (≡ 2GM∗/c
2)

Bp Polodial magnetic field

Bφ Azimuthal magnetic field

Ap Polodial area

Φ Gravitational potential

ΦNP Newtonian potential (≡ −GM∗/r)

ΦPWP Paczyński & Wiita (≡ −GM∗/(r − rg))

Q Cooling

L Luminosity



Chapter 1

Introduction

1.1 Overview

Astronomical observations have shown that space is filled with plasma e.g., interstellar

medium (ISM), intergalactic medium (IGM), etc. Stellar winds, accretion discs, and

jets are also in plasma form. Space is also filled with magnetic fields. Astrophysical

objects have magnetic field in a very broad range like the average surface magnetic

field of the sun of values, ∼ 1G (Babcock, 1963), the region near a black hole ∼ 104−6G

(Rothstein & Lovelace, 2008; Daly, 2019), white dwarf has surface magnetic field ∼

106−8G (Schmidt et al., 2003; Ferrario & Wickramasinghe, 2005) while for neutron

star it is as high as ∼ 108−12G (Pan et al., 2013). ISM has magnetic field ∼ 1µG −

100µG (Beck, 2009), and IGM has very weak magnetic field, minimum estimated is

∼ 10−18G (Arlen et al., 2014; Dermer et al., 2011). Hence, we can conclude that plasma

is embedded in magnetic field of astrophysical objects. If the magnetic energy density

is high or comparable to matter energy density, then magnetic field significantly affects

the plasma dynamics. It has been observationally seen that large scale magnetic field

not only provides energy and momentum to the flow but also guides or collimates the

flow. To study the dynamics of astrophysical flows (stellar wind, jet, and accretion)

around a compact object, it is important to include the effects of the magnetic field.

In this thesis, (1) we study the physics of magnetized plasma in accretion flow onto

neutron star and white dwarf, (2) equatorial outflows from near a magnetized compact

star, and (3) collimated magnetized outflow as a model for astrophysical jets. In all

these scenarios, the temperature varies by few orders of magnitude, such that the

fixed adiabatic index equation of state is untenable. So we use the relativistic equation

of state for the fluid.

1
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We employ magnetohydrodynamic (MHD) equations of motion to study accretion

and outflows around compact objects. However, these objects present a different set

of challenges. For accretion flow which channels onto the neutron star or white dwarf,

the challenge is to obtain a correct solution from the inner region of the accretion disc

onto the star’s surface, such that the matter gently settles onto it. While for equatorial

outflows along open field lines, the solution has to pass through all the available critical

points. For collimated outflows about the axis of symmetry or jets, the challenge is not

only to obtain a solution passing through all the critical points but also to solve the

transfield equation in order to obtain the streamline.

In this thesis, we have addressed these issues in detail and in a more self-consistent

manner. We have also studied the effect of various types of equations of state and com-

position of the plasma on the solution.

1.2 Theoretical Developments in Astrophysical Flows

We will first discuss the general theoretical development in magnetohydrodynamics

(MHDs), then later we will chronologically proceed with the development in hydrody-

namic (HD) and MHD regime of wind/outflow/jet and accretion models.

The first study of ideal and non-ideal axisymmetric MHD flow was carried out

by Chandrasekhar (1956). The flow was assumed to be incompressible and invis-

cid. Assuming the same type of flow, Heinemann & Olbert (1978) focused only on

ideal axisymmetric steady MHD regime and showed that magnetic stream function

has second-order quasi-linear partial differential equation. Tsinganos (1981, 1982)

studied magnetohydrodynamic equilibrium and the conservation laws in detail for ax-

isymmetric MHD steady flow and general magnetic field distribution. Further, Mobarry

& Lovelace (1986) studied the conservation laws for axisymmetric general relativistic

magnetohydrodynamic (GRMHD) steady flow in Schwarzschild geometry.

Below we will discuss in brief the theoretical developments in case of wind, accre-

tion, and jet respectively:

• Accretion: It is a process in which a massive object gravitationally attracts the

surrounding matter. In 1952, Bondi gave the first accretion model for spherical

flows onto a central object in the hydrodynamic regime and his model also had

solution for outflows (e.g., winds). However, it was realised that matter accreted

should have some angular momentum. Thus, instead of matter getting accreted
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spherically it should form a disc around the central object. Viscosity helped in

removing angular momentum outwards thus allowing the matter to reach the in-

ner boundary (Shakura & Sunyaev, 1973; Novikov & Thorne, 1973). These discs

could explain the observed luminosities of X-ray binaries. Unlike for spherical

accretion where matter being radially falling cannot radiate efficiently. In addi-

tion, viscous dissipation causes heating. It was assumed in these models that

the viscous heating is efficiently radiated away which gives rise to multiple black

body spectrum from accretion disc. However, there is a possibility that some

viscous heat might get advected inward during the accretion process which led

to the development of the model of advection-dominated accretion flows (ADAF)

(Abramowicz et al., 1988; Narayan et al., 1997). But all the accretion disc models

discussed above neglected transonicity. Matter far away is subsonic and near the

compact object is supersonic. So accretion flows should pass a sonic point, there-

fore transonic solutions are the physical solutions for accretion flows (Novikov &

Thorne, 1973). In 1980, Liang & Thompson gave transonic solution for thin ac-

cretion disc in general-relativistic regime and studied the applications for black

hole. Later, Fukue (1987) studied the transonic solutions and shock transitions

for accretion disc in case of compact objects and Chakrabarti (1989) also stud-

ied shocks and multiplicity of shocks in case of black hole accretion and winds.

Transonic solutions for black hole accretion highly depend on the composition

of the flow (Chattopadhyay & Chakrabarti, 2011) and dissipation processes e.g.,

viscosity and cooling (Kumar & Chattopadhyay, 2014).

The above mentioned model works well if the accreting object is a black hole or a

star having weak magnetic field. However, for a magnetized star which has strong

magnetic field, like neutron star or white dwarf, accretion occurs in the form of a

disc up to a certain radius, where gas pressure and matter energy density is bal-

anced by magnetic energy density, after which the accretion process is controlled

by star’s magnetic field and the matter is channelled through the magnetic field

lines onto the star’s surface. This is known as magnetized accretion flow or funnel

flow. Pringle et al. (1972); Lamb et al. (1973) and Ghosh & Lamb (1977, 1979)

studied these kind of flows and investigated the transition region which forms

near the inner edge of the accretion disc. Later, Lovelace et al. (1986) presented

steady state, axisymmetric MHD equations of motion to study flows around mag-

netized stars which have dipole like magnetic fields. Camenzind (1990) and Paatz
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et al. (1996) tried to explain accretion and outflows in case of YSOs and T-Tauri

stars with MHD theory.

During magnetized accretion, the gravity of the star increases the flow velocity

of the matter. Such that when this fast moving matter hits the star’s surface it

forms a shock. Energy of the shock is radiated away through cooling processes

and matter gently settles down onto the star’s surface (Li et al., 1996). Some

attempts were made to explain magnetized accretion flow onto neutron star by

considering dipole like magnetic field (Li et al., 1999). The strong magnetic field

of the neutron star also simplifies the MHD equations for funnel flow (Koldoba et

al., 2002) and hence analysis of shocks (Karino & Kino, 2008).

• Wind: Stellar wind and disc wind is composed of plasma which is blown out due

to either thermal gradient force, centrifugal force (due to rotation), radiation force,

and magnetic force. The first hydrodynamic spherical wind model was given by

Parker (1958) applied this model for solar winds. He showed that the solar wind

is just expanding corona. This model was limited because the magnetic field was

ignored but it gave us a basic understanding of stellar winds. However, along with

thermal force and centrifugal force, magnetic force also affects the dynamics of

stellar wind or wind from accretion discs. So, even if the corona temperature

is low, magnetically controlled centrifugal forces can drive stellar winds (Mestel,

1967, 1968), in case of AGNs and rapidly rotating compact objects (Camenzind,

1986a,b). A self-consistent MHD stellar wind model was given by Weber & Davis

in 1967. They predicted the correct solar wind speed at the earth’s orbit, and

showed that magnetic field not only accelerates the wind but also carries away

or removes the angular momentum from the star. If there is an outflow from a

star or accretion disc along open magnetic field lines away from the equatorial

plane then magnetic hoop stress can collimate the flow along the rotation axis

of the star or accretion disc (Sakurai, 1985, 1987). Therefore, some part of the

non-equatorial wind collimates producing outflows.

Winds from compact objects can be thermally relativistic (due to strong gravity)

at the base, which then drive the wind to relativistic velocities. Temperatures,

hence, vary from relativistic to non-relativistic regime. This means that the ef-

fective adiabatic index of the system does not remain constant (in HD regime

Meliani et al., 2004). WD model (in MHD regime Weber & Davis, 1967) assumed



MHD with Relativistic EoS 5

fixed adiabatic index. It could be extended by using variable adiabatic index

equation of state (EoS) to properly study equatorial outflows in strong gravity.

• Jet: It is a ‘collimated’ outflow along the rotation axis of the central object or

accretion disc. If it has high speed close to the speed of light then it is known as

a relativistic jet.

Generally, BHs are known as super eaters, they consume the matter which ven-

tures too close to them. However, it is possible to extract energy and angular

momentum from BH if strong magnetic field (due to currents flowing in accretion

disc) is threading a highly rotating BH. Then electric field can be produced and

high strength of the magnetic field can produce electron-positron pairs (Bland-

ford & Znajek, 1977). These pairs are then accelerated along the rotation axis

and produce particle jets. But jets have also been seen to originate from re-

gions around YSOs, neutron stars and slowly rotating BHs. Thus, they could

be launched from accretion discs, where energy and angular momentum can be

extracted from the disc itself. Matter is pushed (due to thermal gradient, radia-

tion pressure, or centrifugal force) along the open magnetic field lines from the

accretion disc where the magnetic field collimates the flow and carries it to higher

heights. If jets are launched from the accretion disc, then naturally it would have

structure like an onion because different radii of accretion disc will have different

temperatures and angular velocities. Therefore, it is possible to study jets with

self-similar assumption. In 1982, Blandford & Payne gave the first MHD jet model

with the assumption of cold flows and studied self-similar solutions of jet from

the accretion disc. We know that jets have relativistic speeds e.g., Lorentz factor

∼ 10 in AGNs and ∼ 100 in GRBs, so Li et al. (1992) extended the Blandford &

Payne (1982) model of cold outflows to special relativistic magnetohydrodynamic

(SMHD) cold flow. These models ignored the thermal energy because at large

heights thermal energy becomes negligible (due to the expansion of jet) but it will

be significant near the accretion disc. In 2003, Vlahakis et al. (2003a,b) studied

the jet solution from sub-Alvénic (near accretion disc when the flow velocity is

less than local Alfvén wave speed) to super-Alfvénic (far from accretion disc when

the flow velocity is greater than local Alfvén wave speed) regime by considering

the thermal terms with fixed adiabatic index (Γ = 4/3) EoS. Polko et al. (2010)

used Vlahakis et al. (2003a) model with adiabatic index, Γ = 5/3 and different
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current distribution. They showed that the flow can be trans-Alfvénic and trans-

fast (far from accretion disc when flow velocity is greater than local fast wave

speed). Therefore, the thermodynamics of plasma is very important and also the

methodology in which we handle it.

In most of the above mentioned studies of astrophysical flows, fixed adiabatic EoS

has been used. However, as we know that there is almost two to four orders of mag-

nitude change in temperature distribution in accretion, winds or jets, especially when

the central object is compact. So it is essential to use an EoS which has temperature

dependent adiabatic index. Also, the composition of the flow is important. Since for

a flow to be thermally relativistic κBTi > mic
2 and to be non-relativistic κBTi < mic

2.

Not only temperature but also composition matters. There is a relativistic perfect EoS

which was given by Chandrasekhar (1938), but it has Bessel functions of the second

kind which are difficult to handle in the computational domain. Another approximate

but accurate EoS for multi-species flow was given by Chattopadhyay & Ryu (2009) (also

known as CR EoS) which has temperature dependent adiabatic index and a compo-

sition parameter which controls proton-electron-positron proportions in plasma. To

avoid the complications of general relativity but still take into account the effect of

strong gravity, Paczyński & Wiita (1980) proposed a pseudo-Newtonian potential which

although simple, mimics the effects of the Schwarzschild metric.

1.3 Motivation

In hydrodynamics (HDs), there is one signal speed which is the sound speed. Therefore,

HD spherical accretion or outflow has one critical point (also called as sonic point in

HDs due to sound speed). A critical point is, where the flow velocity is equal to the

local sound speed and velocity slope attains a 0/0 form (which can be solved using

L’Hospital’s rule). When a flow has angular momentum then there is a possibility of

formation of multiple critical points (maximum three in HD flows).

However, in case of magnetized plasma we have an entirely different story, there are

three signal speeds which are the slow, Alfvén, and fast speed. Therefore, in these kinds

of flows, we have multiple kinds of critical points (maximum five, we will see in Chapter

4), e.g., slow critical point (flow velocity is equal to local slow wave speed), Aflvén point

(flow velocity is equal to local Alfvén wave speed), and fast point (flow velocity is equal to

local fast wave speed). Thus, a transonic solution for magnetized flow can pass through
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one or multiple critical points and hence there is a possibility of formation of ‘multiple

shocks of different kinds’. But multiple critical points increase the complexity to solve

MHD equations. Another point is, as we have mentioned in section 1.1, magnetic field

affects the dynamics of magnetized flow but magnetized flow also affects the magnetic

field. Therefore in MHD, while solving equations of motion for matter, we need also to

solve Maxwell’s equations to calculate field configuration (we will see in Chapter 2).

In this thesis, our main motivation is to study the effects of magnetic field on the

dynamics of magnetized flows, and thermodynamics of magnetized flows i.e., effect of

different EoS and plasma composition.

We start with the problem of magnetized accretion flow or funnel flow onto neutron

star and white dwarf. Funnel flow starts from the inner radius of the accretion disc,

then follows the magnetic field lines because the strong magnetic field of the star does

not allow the matter to go spirally inwards in the form of a disc onto the star’s surface.

There are many studies available in the literature, but most of them have studied

funnel flow from just above the shock surface. They also assumed pre-shock flow

velocity to be equal to free-fall and studied emission-line shapes (Hartmann et al., 1994;

Muzeroll, Calvet, & Hartmann, 2001). In 2002, Koldoba et al. studied magnetized

accretion flow onto neutron star by solving MHD equations assuming strong magnetic

field, and using the Newtonian potential for neutron star. Their results showed that flow

velocity is very high near the star’s surface. Another problem is that due to Newtonian

potential a maximum of two critical points were possible. So only α-type solutions (a

solution which passes through the outer critical point) existed. These solutions are

not global solutions, only for a small parameter (energy, rotation period, etc) range

these solutions reached the star’s surface. Further, Karino & Kino (2008) extended

Koldoba’s model to study shocks. Their solution successfully matched the surface

conditions (i.e., negligible velocity near the star’s surface) but the shock location was

very far away from the star which contradicts observations (Rana et al., 2005). In 1996,

Li et al. suggested that the star’s gravity can make the flow super-sonic and when the

flow hits the star’s surface with super-sonic speed, a shock will form and matter slows

down to a negligible velocity through dissipation processes. Neutron stars are compact

objects and have radius ∼ 1.0 × 106cm. So it is necessary to consider a strong gravity

potential (pseudo-Newtonian potential Paczyński & Wiita, 1980) and variable adiabatic

index EoS (because temperature changes two to four orders of magnitude due to shock

and cooling processes) while studying flows onto compact objects. In this thesis, we
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dedicate a part of the study to magnetized accretion flows onto neutron stars and white

dwarfs by considering these important aspects.

Next is equatorial wind outflow from compact object. Winds can be blown out

from the inner region of the accretion disc or from near the compact star which is

surrounded by matter in the form of a ring. In this study we relaxed the strong magnetic

field assumption i.e., the field is self-consistently calculated throughout the solution.

The flow is assumed to be in the equatorial plane. We study the effect of plasma

composition on wind outflows from compact object. For this, we adopt the Weber &

Davis (1967) model which is well tested for equatorial stellar winds (discussed in 1.2).

Near the compact object, the temperature is very high and gravity is very strong, so we

use CR EoS (Chattopadhyay & Ryu, 2009) and pseudo-Newtonian potential (Paczyński

& Wiita, 1980). We study the effect of plasma composition on flow velocity and other

flow variables of wind.

Moving onto a different scenario, collimated outflows/jets is a process in which

outflow of matter is along the rotation axis of accreting central object. These jets are

highly collimated, move with very high speeds (0.001c to ∼ c) and span over a large

distance (pc-Mpc scale). There are many observational evidences of accreting black

holes, YSOs, X-ray binaries and AGNs having jets (Reipurth & Bally, 2001; Mirabel

& Rodriguez, 1999, 2003; Pringle, 1993) and there are also evidences for magnetic

field in jets (Wardle & Homan, 2001; Homan, Attridge & Wardle, 2001; Livo, 2001;

Pudritz, Hardcastle, & Gabuzda, 2012; Zamaninasab et al., 2013). Scientists proposed

that magnetic field collimates the outflow and accelerates it to relativistic velocities

(de Gouveia Dal Pino, 2005). Vlahakis et al. (2003a,b) studied collimated outflows in

SMHD. They could only obtain trans-Alfvén solutions since adiabatic index was fixed

to 4/3. Later, Polko et al. (2010) used Vlahakis et al. (2003a) model with fixed adiabatic

index (Γ = 5/3) equation of state and different current distribution. They showed that

the flow can become trans-Alfvénic (sub Alfvénic to super Alfvénic) and trans-fast (sub

fast to super fast). Therefore, the thermodynamics of the flow may play an important

role in determining the nature of the solution. In particular, outflow is hot near the

base but the temperature decreases by few orders of magnitude at large distances,

therefore the adiabatic index is not likely to remain constant throughout the flow. We

study the collimation and composition of outflows/jets in case of compact objects using

Vlahakis et al. (2003a); Polko et al. (2010) models but with the relativistic equation of

state/CR EoS (Chattopadhyay & Ryu, 2009) in SMHD regime. We investigate the effect
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of using fixed adiabatic index EoS and CR EoS. We also study the effect of plasma

composition on jet collimation and flow variables of jet e.g., velocity, temperature, etc.

Therefore, in this thesis, we study the effect of EoSs, and plasma composition

on astrophysical magnetized flows, applicable from accretion onto compact objects to

relativistic jets.

1.4 Thesis layout

The layout of the thesis is as follows:

• Chapter-1: We introduce the astrophysical flows and the importance of the mag-

netic field and magnetohydrodynamics.

• Chapter-2: We present an introduction to MHD, SMHD, and EoS. We explain the

formation of critical points and methodology to solve equations of motion.

• Chapter-3: We present magnetized accretion solutions onto neutron stars, and

white dwarfs. Probably for the first time, we show that with the inclusion of

cooling, it is possible to connect flow from the accretion disc to the star’s surface.

• Chapter-4: We study the effect of plasma composition on the terminal speed of

wind outflow in pseudo- Newtonian gravity.

• Chapter-5: We study jet solutions in SMHD relativistic EOS. We found that plasma

composition mainly affects the velocity and temperature of the jet but it does not

affect the collimation and fast point location.

• Chapter-6: We conclude the major outcomes of this thesis.





Chapter 2

Mathematical Structure and

Methodology to Solve Equations

of Motion

2.1 Overview

We have studied magnetized flows (accretion, winds, and jets) and the nature of these

flows are quite different from one other (also discussed in Chapter 1). Magnetized ac-

cretion flow and winds are generally in non-relativistic to mildly relativistic regime while

astrophysical jets from AGNs and XRBs are relativistic in nature. Therefore, we study

magnetized accretion and winds from compact object in magnetohydrodynamic regime

and collimated outflows or jets in special relativistic magnetohydrodynamic regime. In

the next sections, we describe the equations which we used in our study, the formation

of critical points and numerical methods used.

2.2 Magnetohydrodynamic equations

The magnetohydrodynamic equations in the non-relativistic regime for a flow which is

steady, inviscid and is composed of highly conducting plasma, are as follows (Heine-

mann & Olbert, 1978; Lovelace et al., 1986; Ustyugova et al., 1999),

∇. (ρv) = 0, (2.1)

11
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∇.B = 0, (2.2)

∇× E = 0, (2.3)

(ρv.∇)v = −∇p+
1

c
(J× B)− Φ′(r)r̂ (2.4)

Here, r is radial distance, v is flow velocity, E is electric field, B is magnetic field, ρ

is mass density, p is thermal pressure, J is current density and for highly conducting

plasma J = c(∇×B)/4π, Φ(r) is the gravitational potential. Bold letters are denoted the

vector quantities. The Newtonian potential (NP) is ΦNP(r) = −GM/r, and its derivative

is Φ′NP(r) = GM/r2. The Paczyński & Wiita (1980) potential (PWP) is given by ΦPWP(r) =

−GM/(r − rg) and its derivative is Φ′PWP(r) = GM/(r − rg)2. Where the Schwarzschild

radius is rg = 2GM/c2, G is the gravitational constant, M is mass of the central object

and c is speed of light.

2.3 Special Relativistic Magnetohydrodynamics equations

The special relativistic magnetohydrodynamic equations can be obtained from the to-

tal energy-momentum tensor (Li et al., 1992; Vlahakis et al., 2003a). The energy-

momentum tensor for matter is, Tµνmatter = (ē+ p)uµuν + pηµν , where ē is energy density,

p is gas pressure, the four-velocity components are defined as uµ = (γc, γv) and metric

tensor components ηµν = diag [−1, 1, 1, 1]. The energy-momentum tensor of the elec-

tromagnetic field is given by Tµνem =
(
FµλF νλ − 1

4η
µνF δλFδλ

)
/(4π). Therefore, the total

energy-momentum tensor is Tµν = Tµνmatter + Tµνem . The conservation of energy and mo-

mentum in a covariant form can be written as,

∇νTµν = 0. (2.5)

Maxwell’s equations are,

∇.B = 0, ∇.E =
4π

c
J0, ∇× B =

1

c

∂E
∂t

+
4π

c
J, ∇× E = −1

c

∂B
∂t
, (2.6)

where Jµ =
(
J0,J

)
is four-current density and E is electric field.
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2.4 Closure equations

To solve the equations of motion which are mentioned above whether for MHD or SMHD,

we need two more equations. They are, the ideal MHD condition for the electromagnetic

field which relates the electric field to the magnetic field and the equation of state (EoS)

for the matter which relates the thermodynamic variables. These two equations are

known as closure equations because with these two equations we have a closed system

i.e., number of unknowns are equal to or less than the number of equations.

2.4.1 Ideal MHD flow assumption

For an ideal MHD flow, the electric field is zero in the co-moving frame (Mobarry &

Lovelace, 1986; Choudhuri, 1998; Priest, 2014) i.e., uνFµν = 0 or

E = −1

c
v× B. (2.7)

This is known as the ideal MHD condition. Then the flux freezing condition can be

obtained from the Faraday equation,

∇× (v× B) =
∂B
∂t
.

For steady flow, the Faraday equation has the following form,

∇× (v× B) = 0. (2.8)

2.4.2 Equation of state with fixed adiabatic index

The energy density ē for fixed adiabatic index Γ (specific heat ratio) or the equation of

state (EoS) (see Chapter 6 of Choudhuri, 1998) is given by

ē =
p

Γ− 1
,

and the adiabatic equation of state for fixed Γ is obtained by integrating the 1st law of

thermodynamics without any sink or source term,

p = KρΓ, (2.9)
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where K is the measure of entropy. If we use the continuity equation (2.1) with equation

(2.9) then we obtain the entropy accretion rate Ṁ,

Ṁ = vgAgc
2N
s . (2.10)

Here, cs ≡
√

Γp/ρ is the sound speed, and N = 1/(Γ− 1) is the polytropic index and Ag

is area across which matter is flowing with velocity vg or in other words vg is velocity

component perpendicular to the area Ag. For example, in case of equatorial stellar

wind, vg = vr radial velocity and Ag ∝ r2 and similarly for poloidal flows e.g., magnetized

accretion, vg = vp poloidal velocity and Ag = Ap.

2.4.3 Relativistic equation of state with variable adiabatic index

In the relativistic regime, for fluid having Maxwell-Boltzmann distribution, the ideal

equation of state is given by,

ē = ρc2 +
p

Γ− 1
and h =

ē+ p

ρ
(2.11)

here, h is specific enthalpy. The energy density (ē) also contains the rest mass energy

density, and Γ is the adiabatic index which is fixed. In 1948, Taub, using relativistic

kinetic theory showed that there is a fundamental inequality,

(h− p/ρc2)(h− 4p/ρc2) ≥ 1. (2.12)

that should be obeyed by an EoS, therefore the choice of EoS can not be arbitrary.

Thus, ideal equation of state (2.11) is ruled out because it does not satisfy the Taub

inequality (2.12) for 0 < p/ρc2 <∞.

We know that the adiabatic index depends upon temperature, and in case of out-

flow or accretion the temperature varies by two to four orders of magnitude. Addi-

tionally mass of the species that constitute the plasma also plays an essential role.

So, the composition of the plasma is also important. Thus, to find a more accurate

and consistent solutions, we need an EoS which has a temperature and composition

dependent adiabatic index. Chandrasekhar (1938) obtained the exact relativistically

perfect EoS for hot gas which has a variable adiabatic index. The form of this EoS is
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given for single species perfect gas (Chandrasekhar, 1938; Synge, 1957),

ē = ρc2 + ρc2
[
K3(ρc2/p)

K2(ρc2/p)
− p

ρc2
− 1

]
and h =

K3(ρc2/p)

K2(ρc2/p)
, (2.13)

where, K2 and K3 are modified Bessel functions of the second kind. This equation

of state satisfies the Taub inequality (2.12), and has temperature dependent adia-

batic index. Thus, we do not need to specify the adiabatic index manually, it is taken

care of by the EoS itself. But it is difficult to use this EoS in numerical calculations

due to the presence of modified Bessel functions of the second kind, which we know

are non-terminating series. There is another approximate and accurate EoS given by

Chattopadhyay & Ryu (2009) for multi-species flow (i.e., a flow composed of electron,

positron, and proton) having variable adiabatic index — the CR EoS. In our analysis,

we will use CR EoS, because it has a simple function f(Θ, ξ) instead of complicated

Bessel functions.

The energy density for multi species flow as stated by CR EoS is given by,

ē = ne−me−c
2f(Θ, ξ) = ρe−c

2f(Θ, ξ) =
ρc2f(Θ, ξ)

K
, (2.14)

where, f(Θ, ξ) = (2 − ξ)
[
1 + Θ

(
9Θ+3
3Θ+2

)]
+ ξ

[
1
η + Θ

(
9Θ+3/η
3Θ+2/η

)]
, K = [2 − ξ(1 − 1/η)], Θ =

κBT/me−c
2 is dimensionless temperature, T is temperature, ρe− is rest-mass density

of electrons, η = me−/mp+ is electron to proton mass ratio, the composition parameter

ξ = np+/ne− is the ratio of number density of protons to that of electrons. A flow

described by ξ = 0.0 implies an electron-positron pair plasma, 0.0 < ξ < 1.0 imply

electron-positron-proton plasma and ξ = 1.0 implies electron-proton plasma. Enthalpy

h, variable adiabatic index Γ and polytropic index N are given by,

h =
ē+ p

ρ
=
fc2

K
+

2Θc2

K
, Γ = 1 +

1

N
, and N =

1

2

df

dΘ
. (2.15)

If we integrate the 1st law of thermodynamics without any sink or source term, we can

obtain the adiabatic equation of state which has temperature dependent adiabatic in-

dex (Kumar & Chattopadhyay, 2013; Vyas et al., 2015; Singh & Chattopadhyay, 2018b),

ρ = Kg(Θ, ξ), (2.16)

where, g(Θ, ξ) = exp(k3)Θ3/2(3Θ + 2)k1(3Θ + 2/η)k2 , k1 = 3(2 − ξ)/4, k2 = 3ξ/4 and k3 =

(f − K)/(2Θ) and K is the measure of entropy. Similar to fixed adiabatic index EoS
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(equation 2.9), we can also obtain the entropy accretion rate Ṁ for variable adiabatic

index EoS (or CR EoS) with the help of continuity equation (2.1),

Ṁ = vgAgg(Θ, ξ). (2.17)

2.5 Methodology to solve equations of motion

The equations of motion for an inflow or outflow can be obtained from the momentum

balance equation. The equations of motion have a general form irrespective in which

flow variable we write it and the flow variables are v, ρ, etc. For example, in terms of

velocity variable v, the equations of motion have the following form:

dv

dr
=
N (r, v, T )

D(r, v, T )
. (2.18)

Here N is numerator and D is denominator. If we specify the initial conditions then we

can find the solution by integrating the equations of motion (2.18) with the help of other

equations (e.g., temperature gradient equation from the first law of thermodynamics).

2.5.1 Critical point conditions

r=0 r=L

Figure 2.1: de-Laval Nozzle.

Formation of a critical point can be understood with an example of the de-Laval

nozzle (Fig. 2.1) in HD regime, whose cross-sectional area (A) is a function of distance

(r) i.e., A ≡ A(r). So with the help of the continuity equation and momentum balance

equation, we can write the equations of motion for the flow which passes through the
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tube like in Fig. 2.1 and has the following form (see section 6.7 Choudhuri, 1998),

dv

dr
=
N (r, v, T )

D(r, v, T )
=
− v
A
dA
dr

1−M2
. (2.19)

Here, M is Mach number, M = v/cs. In equation (2.19), we note that velocity slope

(dv/dr) and area slope (dA/dr) have opposite sign. Therefore, in region-I, if flow is sub-

sonic (v < cs or M < 1) and the area is converging (dA/dr is negative) then velocity slope

becomes positive i.e., flow is accelerating. Now, in region-II, flow is supersonic (v > cs

or M > 1) and area is diverging (dA/dr is positive) then again velocity slope becomes

positive i.e., flow is accelerating. Therefore, flow can become subsonic to supersonic

when it passes through a throat which has shape as shown in Fig. 2.1. It also means

that at some distance, flow velocity becomes equal to the local sound speed i.e., v = cs

or M = 1 at distance r = rc, and at this distance, velocity slope attains 0/0 form or

N|rc = D|rc = 0 (see equation 2.19) since area slope is also zero at this point. This point

is known as critical point and rc is the critical point radius.

It may be noted that even in absence of an explicit throat in the flow geometry, it is

the presence of gravity (e.g., see the last term in the expression of N in equation 3.21

for magnetized accretion and also in equation 4.14 for outflows), which mathematically

acts as an effective throat and causes the formation of a critical point in a flow. The

presence of centrifugal and magnetic forces modify the effective gravity throat at differ-

ent locations and as a result, we have multiple critical points (MCP) of different kinds,

X-type critical point (has real velocity slope), O-type (has imaginary velocity slope), and

if cooling is present then we have spiral-type critical point (has complex velocity slope).

We know that plasma has three signal speeds (say vS) i.e., slow speed, Alfvén speed,

and fast speed. When the flow velocity is equal to one of the signal speed at a certain

point (say rc) then equation (2.18) has 0/0 or N|rc = D|rc = 0. So, in MHD or SMHD,

we have three types of critical points, a slow critical point (flow velocity is equal to the

slow speed), Alfvén critical point (flow velocity is equal to Alfvén speed) and fast critical

point (flow velocity is equal to fast speed).

We can also use a critical point as the initial boundary for the integration of the

equations of motion (2.18) by evaluating the velocity slope at the critical point with the

help of L’Hospital’s rule. One of the benefits of choosing critical point as the initial

boundary for integration is that at this point v = vs which simplifies the equations of

motion. A transonic solution is one which passes through the critical points and has

maximum entropy. For example, a wind outflow solution passes through three critical
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points (slow, Alfvén, and fast points) (see section 4.4). Therefore transonic solutions

are the only plausible solutions for inflows or outflows.

2.5.2 Numerical Methods

In all studies, we used the Newton-Raphson method to find critical points from critical

point conditions. The Newton-Raphson method has faster convergence than the bi-

section method because it takes into account the slope of functions. To solve the

indeterminate form of velocity slope at the critical point, we use 2nd order numerical

difference method for L’Hospital’s rule. For solution integration, we used Runge-Kutta

4th order method.



Chapter 3

The Study of Magnetized

accretion flow onto compact

objects

3.1 Overview

Neutron stars (NSs) are very fascinating objects because they have strong magnetic

field and gravitational field. Also, white dwarfs (WDs) have very strong magnetic field.

As we have discussed in Chapter 1, these objects after certain radius (B2/8π ∼
(
p, ρv2

)
)

accrete matter (from the inner region of the disc) in the form of accretion curtains

along the field lines. In this chapter, we investigate magnetized accretion flow onto

NSs and WDs by extending Koldoba et al. (2002) and Karino & Kino (2008), by con-

sidering Paczyńsky-Wiita pseudo-potential to mimic strong gravity. We include cooling

processes (bremsstrahlung and cyclotron cooling) and assume fixed as well as variable

adiabatic index EoS or CR EoS (Chattopadhyay & Ryu, 2009) for different compositions

of flow. We calculate the parameter space and study magnetized accretion solutions for

different rotation periods of the star and energy of the flow. We found that accretion

solution has a very strong shock near the star’s surface which is the primary shock,

and for certain parameters (energy, rotation period of the star), accretion solution also

has a weaker secondary shock very far away from the star. We have found that cool-

ing is important to get a consistent magnetized accretion solution which satisfies the

surface boundary of star i.e., v → 0 because cooling radiates away energy of the shock

19
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Figure 3.1: This is illustration of magnetized accretion flow onto NS for aligned
magnetic moment (µ) with angular velocity (Ω). Where, θ is polar angle, r is radial
distance, R◦ is star’s radius, Bp is polodial magnetic field, rsh is shock radius, rc is
critical point radius, and rd is radius from the matter starts channelling the magnetic
field.

and helps matter to slowly settle down onto the star’s surface. Further, we investigate

the shock properties e.g., shock height, compression ratio, shock strength, luminosity,

etc and study their dependence on the rotation period of the star and energy of the

flow. As we have mentioned that composition of astrophysical flows is poorly known,

so we have studied parameter space and magnetized accretion solutions for flow hav-

ing different compositions. We have also investigated magnetized accretion flow onto a

WD and our results have good match with the observations. We study the dynamics

of magnetized accretion solutions with inclusion of cooling processes onto magnetized

stars using fixed adiabatic index EoS and variable adiabatic index EoS (CR EoS) and

these results are published in Singh & Chattopadhyay (2018a,b) respectively.

3.2 Equations and Assumptions

3.2.1 Governing Equations

We have used the MHD equations which were mentioned in 2.2 with assumptions that

the flow is steady and axisymmetric. Therefore, velocity has the form v ≡ v(vp,0,vφ)

and magnetic field B ≡ B(Bp,0,Bφ), where vp is poloidal velocity, vφ is azimuthal

velocity, Bp is poloidal magnetic field, and Bφ is azimuthal magnetic field.
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In presence of cooling, the 1st law of thermodynamics is given by

ρvp

[
de

dr
− p

ρ2

dρ

dr

]
= Qbr +Qcycl = Q, (3.1)

where, e = ē/ρ is the internal energy, ē is the energy density, p is pressure, ρ is mass

density and Q is the total cooling. Qbr is the bremsstrahlung cooling term and which

is given by,

Qbr = λbrρ
2T

1/2
e− , (3.2)

where, Te− is electron temperature and λbr ∼ 5× 1020erg cm−3g−2s−1. Qcycl is cyclotron

cooling term. Cyclotron cooling is a very complicated process where both emission

and resonant absorption can be important. Therefore, depending on the frequency of

the radiation, the flow might behave as an optically thick or thin medium, although

the Thompson scattering optical depth of the flow might be well below 1. Generally,

such complications are avoided by considering a cooling function which mimics all the

complicated cooling processes (Saxton et al., 1998). We choose the form of Qcycl given

by Busschaert et al. (2015),

Qcycl = λcycl

(
Ap

1015cm2

)−17/40(
Bp

107G

)57/20

×
(

ρ

4× 10−8g/cm3

)3/20(
Te−

108K

)
, (3.3)

where, Bp is the poloidal magnetic field component and Ap is the cross-section of the

flow orthogonal to Bp and λcycl ∼ 1.2× 108erg cm−3s−1 (Busschaert et al., 2015).

If we integrate the MHD equations in the presence of the above assumptions along

the magnetic field lines then we can obtain the conserved quantities which are labelled

with the magnetic stream function Ψ(r, θ). The conserved quantities are:

(i) By integrating continuity equation (2.1) we obtain the expression of mass flux

(Ṁ),

ρvpAp = constant = Ṁ. (3.4)

(ii) Integrating equation (2.2), we obtain the magnetic flux conservation,

BpAp = constant. (3.5)

Using equations (3.4) and (3.5), we can write vp as

vp =
κ(Ψ)

4πρ
Bp, (3.6)
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where, κ is the mass to magnetic flux ratio.

(iii) Faraday equation (2.3) for highly conducting fluid gives the conservation of an-

gular velocity of magnetic field lines (Ω),

Ω (Ψ) = ω − κ(Ψ)Bφ
4πρ$

= constant, (3.7)

where, ω = vφ/rsin(θ) is the angular velocity and $ = rsin(θ) is the cylindrical

radius.

(iv) φ-component of momentum balance equation (2.4) gives the total angular mo-

mentum (Λ) which remains conserved along the magnetic field lines,

Λ(Ψ) = ω$2 − Bφ$

κ(Ψ)
= constant. (3.8)

(v) Therefore, integration of poloidal component of momentum balance equation (2.4)

gives the conservation of total energy (E) along the magnetic field lines,

E(Ψ) =
1

2
v2

p +
1

2
(ω − Ω)2$2 + h+ Φ(r)− Ω2$2

2
−
∫
Qdr

ρvp
= constant. (3.9)

In the above equations, h is the specific enthalpy. Equation (3.9) is the generalized

Bernoulli integral along the magnetic field lines which remains constant even in the

presence of cooling. One can retrieve the canonical form of Bernoulli integral assuming

an adiabatic flow (Lovelace et al., 1986; Ustyugova et al., 1999; Koldoba et al., 2002),

if cooling is not considered.

3.2.2 Assumptions

We assume that NS has a dipole-like magnetic field whose magnetic moment (µ) is

aligned with the rotation axis of the star (Koldoba et al., 2002), see Fig. 3.1. Here,

we have assumed that the magnetic field is very strong so that the flow does not alter

the configuration of the magnetic field lines and this also implies that the flow is sub-

Alfvén,

B2
p/8π � (p, ρv2) and ρA/ρ� 1 or M2

A � 1. (3.10)
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In the above, the poloidal Alfvénic Mach number is defined by

M2
A ≡

v2
p

v2
Ap

=
ρA

ρ
, (3.11)

where v2
Ap = B2

p/4πρ and ρA = 4πκ(Ψ). The stream function (Ψ) for the dipole magnetic

field in spherical coordinates is given by,

Ψ =
µ

r
sin2(θ) or r = rd(Ψ)sin2(θ), (3.12)

where rd = µ/Ψ is the radius from where the matter starts channelling the magnetic

field lines and Bp is given by,

Bp(r) =
µ

r3
(4− 3sin2(θ))1/2 or Bp(r) =

µ

r3
(4− 3r/rd)1/2. (3.13)

We can obtain relations for ω and Bφ by using equations (3.7) and (3.8) with the strong

magnetic field and sub-Alfénic assumption (for more detail see Koldoba et al. (2002);

Singh & Chattopadhyay (2018b)),

|ω − Ω|/Ω� 1 and Bφ/Bp � 1. (3.14)

The first relation implies that the local angular velocity (ω) of the fluid remains constant

along the magnetic field lines and is equal to the angular velocity of the magnetic field

lines Ω(Ψ). If the magnetic field lines are locked into the star’s surface then Ω(Ψ) = Ωstar,

where Ωstar is the angular velocity of a star. It means that the strong magnetic field

forces the matter to co-rotate with the star. Therefore, rd should be close to the co-

rotation radius rco(≡
[
GM◦/Ω

2
]1/3

). Our assumption will not work for rd � rco. For that

we have to take into account the effect of disc on the magnetic field configuration. The

second relation shows that azimuthal component of magnetic field (Bφ) is negligible

as compared to poloidal component of the magnetic field (Bp), so we can neglect it.

Cross-sectional area (Ap) can be calculated from equations (3.5) and (3.13).

3.2.3 Entropy Accretion Rate and Electron Temperature

If we ignore any dissipative processes, then by integrating 1st law of thermodynamics

without any source or sink term, we can obtain the adiabatic relation. Therefore, for
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fixed adiabatic index EoS, the entropy accretion rate is given by (2.4.2),

Ṁ = vpApc
2N
s = constant for adiabatic flow. (3.15)

We have included radiative cooling processes (equations 3.2, 3.3) unlike Koldoba et al.

(2002) and Karino & Kino (2008). We will show later that the flow will not come to rest

on the surface of the central compact object if we neglect dissipation. Since this is not

a two temperature solution but a one temperature problem with proton and electron

having the same temperature. So computing the emissivity using T would overesti-

mate. The electron temperature Te− is in general smaller than the proton temperature,

and we approximate it as Te− =
√
me−/mpT (Chattopadhyay & Chakrabarti, 2002; Das

& Chattopadhyay, 2008) in case of fixed adiabatic index EoS.

In case of variable adiabatic index EoS or CR EoS, the entropy accretion rate (Ṁ)

is given by (2.4.3),

Ṁ = vpApg(Θ, ξ) = constant for adiabatic flow. (3.16)

To estimate the electron temperature Te− in CR EoS, we assume that the electron gas

possess the same N as our single temperature, multi-species solution. Therefore, the

approximated electron temperature is given by Kumar & Chattopadhyay (2014)

Te− =

[
−2

3
+

1

3

√
4− 2

(2N − 3)

(N − 3)

]
me−c

2

κB
. (3.17)

In case of CR EoS, the sound speed is defined by,

c2s ≡
2Γ(Θ, ξ)Θc2

K
. (3.18)

3.2.4 Bernoulli Function and Equations of Motion with Dipole Mag-

netic Field Assumption

Under the present set of assumptions, the Bernoulli integral from equation (3.1) and

(3.9) takes the following form,

B (r, vp) =
v2

p

2
+ h+ Φg(r)−

∫
Qdr

ρvp
, (3.19)
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where, vp = µκ(Ψ) (4− 3r/rd)
1/2

/4πρr3, Φg(r) = −Ω2r2
co

(
αrd
r−rg + r3

2α2r3d

)
, α = rco/rd = 1,

rg = 2GM◦/c
2. Gradient of vp can be obtained by taking the space derivative of the

Bernoulli integral (equation 3.19),

dvp

dr
=
N (r, vp,Θ)

D(r, vp,Θ)
, (3.20)

where,

N (r, vp) =
3c2s
2r

(
8− 5r/rd

4− 3r/rd

)
− δ

n
− Φ

′

g(r), (3.21)

D(r, vp) =

(
vp −

c2s
vp

)
and δ ≡ Q

ρvp
. (3.22)

We have considered the full energy balance (equation 3.1), which gives the gradient

in temperature in the presence of cooling,

dΘ

dr
=

(
δK

2Nc2

)
− Θ

N

[
1

vp

dvp

dr
+

3 (8− 5r/rd)

2r (4− 3r/rd)

]
. (3.23)

3.2.5 Shock Conditions

The MHD shock conditions (Kennel et al., 1989) reduce to simple hydrodynamic shock

conditions with the help of strong field approximation, where the information of mag-

netic field lies inside the poloidal velocity,

[ρvp] = 0,
[
ρv2

p + p
]

= 0,and

[
ρvp

{
v2

p

2
+ h−

∫
Qdr

ρvp

}]
= 0. (3.24)

Square bracket implies the difference of the pre-shock and post-shock flow quantities.

3.3 Methodology

In section 2.5.1, we explained how critical points form. Physically, in case of accretion,

gravity accelerates the inflow from the accretion radius towards the central object and

thereby primarily increases the kinetic energy of the flow. However, since accretion

is a convergent flow it increases the temperature as a secondary effect. Therefore,

gravity while pulling the flow towards the central object increases both the velocity

and temperature (and therefore the sound speed, which also affects the plasma signal

speeds) together but increases the inflow velocity with a sharper gradient. This causes

the flow velocity to cross the local signal speed at the critical point (rc). Now if the

flow is also rotating and magnetized, then the nature of gravitational interaction can
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be modified (by centrifugal force and magnetic force). Then the flow can have MCP i.e.,

the flow can become transonic at different distances for a given set of parameters.

In the present study, due to the strong magnetic field assumption, we have one

signal speed which is the sound speed. Therefore, a critical point forms when flow

velocity (vp) is equal to local sound speed. Because in this case, the centrifugal force

is present, so we may have multiple critical points. To solve the equations of motion

(3.20, 3.23), one needs to specify the gravitational field via star’s mass (M◦), star’s

rotation period (P ) and the surface magnetic field of the star (Bp◦). Star’s radius R◦ is

an input parameter. It is well known that a small value of M◦/R◦ makes Φ(r) closer to

the Newtonian gravitational potential. In this study, we aimed at magnetized accretion

onto NS, but we have also modified these input parameters to study funnel accretion

onto WD too, which would be presented later in the result section. Moreover, the

rotation period of the star and surface magnetic field have some relation has also been

observed (see, Pan et al., 2013). In this study, we have considered radiative cooling,

so either we have to supply the accretion rate (Ṁ ), or equivalently, supply the density

(ρd) at some distance (rd) from the central object. So, we need only two parameters,

P and ρd as inputs. Then, we can find the poloidal velocity (vpc) or mass density (ρc),

and dimensionless temperature (Θc) at the critical radius (rc) from the critical point

conditions (equations 3.21 & 3.22, N (r, vp)|rc = D(r, vp)|rc = 0).

Flow generally starts with a subsonic velocity from rd and after passing through

a critical/sonic point, it becomes supersonic. The star’s surface acts as the obstruc-

tion for the supersonic matter and drives a terminating shock near the surface. This

is true for accretion solutions of all compact objects with a hard surface. The cool-

ing processes are particularly dominant in the post-shock region since the post-shock

is denser and hotter. Apart from the necessity to include cooling from physical ar-

guments, we found that the cooling processes are absolutely necessary condition, in

order to obtain a believable accretion solution. By radiating away a lot of shock-heated

energy, the cooling processes help to achieve the inner boundary condition of vp → 0

as r → R◦. Moreover, the flow is rotating, so multiple sonic points may also occur and

if that is the case, then the possibility of forming multiple shocks increases.

The method to find an accretion solution is as follows:

1. We find the critical point location and value of flow variables at that point and

then velocity slope (dvp/dr)rc with the help of the L’Hospital’s rule at the critical

point for given set of compact object parameters Bp◦, P, M◦, R◦.
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2. We then integrate the equations of motion (3.20, 3.23) forward and backward

from the critical point by using fourth order Runga-Kutta method.

3. While integrating we simultaneously check for the shock conditions (equation

3.24). If the shock conditions are satisfied at some radius rsh then we compute

the post-shock variables and then start integration from the shock but now on

the post-shock branch.

4. Near the star’s surface, we search for the post-shock solution which matches the

surface boundary condition of the star.

3.4 Analysis and Results

As far we know this kind of study has not been done in the literature. So, we do

not know the topology and nature of magnetized accretion solution with full cooling

processes. Thus to understand the methodology to find a consistent magnetized so-

lution, we have first studied magnetized flow with the inclusion of cooling (cyclotron

and bremsstrahlung) using fixed adiabatic index of EoS which is mathematically and

numerically easier to handle. We used expressions of cs, h, Te,Ṁ and Γ according to

the EoS but the form of equations of motion (see in the sections 3.2.2, 3.2.4, 3.2.5)

remain same for both the EoS.

The analysis is done in the geometrical units, which means that velocity is in units

of c and distance in terms of rg = 2GM◦
c2 . We have considered that the radius and mass

of the star as R◦ = 1.0× 106cm and M◦ = 1.4 M⊙, respectively. Therefore, in units of rg,

the radius of the star is R◦ = 2.418rg but we quote the rotation period (P ) in seconds.

The adiabatic index Γ = 5/3 and α = 1.

3.4.1 Comparison of solutions in Newtonian and Paczyński-Wiita po-

tential

In this section, we have discussed and compared the solutions of Koldoba’s model

(i.e., no cooling) in Newtonian and Paczyński-Wiita potential. As we have discussed in

Chapter 1 that in Newtonian potential (NP), we have a maximum two critical points

and solutions are only α-type, however in Paczyński-Wiita potential (PWP), we have a

maximum three critical points. In Fig. 3.2, we have plotted the Bc versus rc in panel

(a), Bc versus Ṁc in panel (b), logΘ in panel (c) and logM in panel (d) versus r, dashed

red curves for NP and solid green curves for PWP. These are solutions using Koldoba’s
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Figure 3.2: We have plotted the Bc versus rc in panel (a), Bc versus Ṁc in panel (b),
logΘ in panel (c) and logM in panel (d) versus r, dashed red curves for NP and solid
green curves for PWP. Here P = 1s, B = −0.00190 (dotted black).

model for neutron star having rotation period P = 1s, B = −0.00190 and using fixed

adiabatic index EoS.

In Fig. 3.2 (a), we can see that for B = −0.00190 (dotted black), only two critical

points are possible in NP (dashed, red) and three critical points in PWP (solid green).

For the outer critical point (denoted by red open-circle for NP and green asterisk for

PWP in Fig. 3.2 a), we have calculated the solutions. We can note that the accretion

solution which is denoted by red-dashed curve with arrows for NP does not reach the

star surface (see Fig. 3.2 d). However, for the accretion solution which is denoted by

green-solid curve with arrows reaches the star surface (see Fig. 3.2 d). However, only

for small parameter range, α-type solutions can be considered as magnetized accretion

solutions but we do not know parameter range prior for those solutions, and there is
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Figure 3.3: Total energy Bc is plotted with rc (a, c) and Bc versus entropy accretion
rate Ṁc (b, d). The upper plots are for two values of surface magnetic field Bp◦ = 109G
(solid, black) and 1011G (dashed, red) for a density ρd = 5.0× 10−10g cm−3 (a, b). In
lower two panels (c, d) the plots are for two values of density ρd = 5.0× 10−10g cm−3

(solid, black) and 1.0 × 10−8g cm−3 (dashed, red) for Bp◦ = 1011G. All the plots are
for P = 1s (Singh & Chattopadhyay, 2018a).

no inner critical point present for NP (see Fig. 3.2 a) that means no shock solutions. To

overcome this problem, we used Paczyński-Wiita potential in the rest of our analysis.

3.4.2 Solutions using fixed adiabatic index EoS

For P = 1s, we have plotted the Bc versus rc in Fig. 3.3 (a, c) and Bc versus Ṁc in Fig.

3.3 (b, d). In upper two panels (Fig. 3.3 a, b), we consider ρd = 5.0 × 10−10g cm−3 but

two values magnetic field Bp◦ = 109G (solid, black) and Bp◦ = 1011G (dashed, red). In

Fig. 3.3 (c, d), we consider surface magnetic field as Bp◦ = 1011G but two values of

ρd = 1.0 × 10−8g cm−3 (solid, black) and ρd = 5.0 × 10−10g cm−3 (dashed, red). Dotted

blue curves in Fig. 3.3 (a, c) show the upper limit of rc, i. e., rcl and its corresponding

energy Bcl. If there is a maximum and a minimum in the Bc − rc curve for a given
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value of P , then there is a possibility of forming multiple critical/sonic points (MCP),

if the energy of the flow happens to fall in between the maximum or minimum values.

For example, if B is between −0.0083 to − 0.0013 for the accretion flow characterized by

curve light-dashed in Fig. 3.3 (a), then the flow will harbour MCP. The Bc—Ṁc plots

(Fig. 3.3 b, d) also show the same effect. The kite-tail feature is symptomatic of MCP.

Various combinations of Bc and Ṁc, produce the sonic points, the IK (XO) branch of

the dashed-solid curve is the loci of inner sonic points, KJ (OJ) branch of the dashed-

solid curve is loci of middle sonic points and IJ curve is loci of outer sonic points (Fig.

3.3 b, d). As long as the entropy of the inner sonic point (Ṁc) is greater than that of

the outer sonic point, then there is possibility of a second shock formation away, and

in addition to the shock forming close to the star’s surface.

We have plotted the log of Mach number logM (Fig. 3.4 a), poloidal velocity logvp

(Fig. 3.4 b), dimensionless temperature logΘ (Fig. 3.4 c) and entropy-accretion rate

(Ṁ) (Fig. 3.4 d) as a function of r. The accretion parameters are P = 1s, Bp◦ =

1010G, ρd = 5 × 10−10g cm−3 and B = −0.00203. The accretion flow passes through

the outer sonic point and then suffers a shock at radius 12.897. The subsonic post-

shock matter accelerates and again becomes supersonic as it crosses the inner sonic

point. This supersonic matter again suffers a shock at radius 2.434, which is very

close to the surface of the star. The inset in each panel zooms onto the inner shock.

The temperature and the poloidal velocity starts from quite low values and becomes

relativistic. The temperature in the inner post-shock region reaches a very high values,

due to cooling processes decreases drastically down to very lower values. Because of

the presence of cooling processes the entropy is not constant (Fig. 3.4 d).

We plot logM (Fig. 3.5 a), logvp (Fig. 3.5 b), logΘ (Fig. 3.5 c) and Ṁ (Fig. 3.5

d) as a function of r, which also harbours multiple shock with a much faster rotating

system with P = 10ms, Bp◦ = 3.16 × 108G, ρd = 5 × 10−10g cm−3 and B = −0.02846. The

two shocks are located at radii 5.081 and 8.414, but are much weaker than the previous

case.

3.4.3 Solutions using variable adiabatic index EoS

In this section, we present results of magnetized accretion or funnel flow with variable

adiabatic index EoS (CR EoS). In this analysis, for NS we have considered same R◦ =

1.0 × 106cm and mass M◦ = 1.4M⊙ and also same unit system as in the case of fixed

adiabatic index EoS analysis.
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Figure 3.4: The accretion solution for P = 1 s. Log of Mach number logM in panel
(a), log of poloidal velocity logvp in panel (b), log of dimensionless temperature logΘ in

panel (c) and Ṁ in panel (d), as a function of r. The accretion solution is represented
by solid red curve, shock by dotted blue curve and other branch of solution by dashed-
black curve (Singh & Chattopadhyay, 2018a).

Similar to fixed adiabatic index EoS analysis, we have also studied the parameter

space with CR EoS. We have plotted Bc versus rc in Fig. 3.6 (a, c) and Bc versus Ṁc

in Fig. 3.6 (b, d). Different curves in the upper two panels (Fig. 3.6 a, b) are plotted

for Bp◦ = 109G (solid, black) and Bp◦ = 1011G (dashed, red), but for the same value of

Ṁ = 3.51× 1015g s−1. The curves in the lower two panels (Fig. 3.6 c, d) are plotted for

two values of Ṁ = 3.51× 1015g s−1 (solid, black) and Ṁ = 3.51× 1016g s−1 (dashed, red),

but for the same value of Bp◦ = 1011G. All the plots are for the same P = 1s and ξ = 1. It

may be noted that in this case also, each of the Bc(rc) curve has a maximum Bcmax and a

minimum Bcmin. Any flow for which Bcmin ≤ B ≤ Bcmax, there can be three critical/sonic

points i.e., inner, middle and outer sonic points. The inner and outer sonic points are
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Figure 3.5: The accretion solution (f) for P = 10 ms. Log of Mach number logM in
panel (a), log of poloidal velocity logvp in panel (b), log of dimensionless temperature

logΘ in panel (c) and Ṁ in panel (d), as a function of r. The accretion solution
is represented by solid red curve, shock by dotted blue curve and other branches of
solution by dashed black curve (Singh & Chattopadhyay, 2018a).

X-type and the middle sonic point is spiral type. A flow with B ≥ Bcmax there can be

only one inner X-type sonic point. Interestingly, the upper limit of rc is rcl, for which

the corresponding Bc is Bcl, and they are a function of P . For Bcl ≤ B ≤ Bcmin, only an

outer X-type sonic point is possible. In Figs 3.6 (b, d), XS (OL) curve represents the

loci of inner sonic points which are X-type, SK (LK) curve represents the loci of middle

spiral-type sonic points and KJ curve represents the loci of outer sonic points which

are also X-type. This is the famous ‘kite-tail’ diagram in the energy-entropy space (i.

e., Bc—Ṁc space). The kite-tail is the enclosed area FSK (or, HLK). Therefore, if Bc lies

between the coordinate points J and K, then there would three multiple sonic points.

For the range of Bc lies above K, only inner sonic point forms. If Bc lies in the range
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Figure 3.6: Critical energy Bc versus rc (a, c) and Bc versus Ṁc (b, d). In plots
(a, b), solid black curve for Bp◦ = 109G and dashed red curve for Bp◦ = 1011G with

Ṁ = 3.51 × 1015g s−1. In plots (c,d), solid black curve for Ṁ = 3.51 × 1015g s−1 and
dashed red curve for Ṁ = 3.51× 1016g s−1 with Bp◦ = 1011G. All these plots have, P
= 1s and ξ = 1 (Singh & Chattopadhyay, 2018b).

between J and S (L), then there are two sonic points, the inner one is X type and the

outer one is spiral type. These parameters do not produce global solutions. For Bc lies

below the S (L), no transonic solution is possible. It must be noted that the effect of

increasing the surface magnetic field shifts the kite-tail to higher entropy region (FSK

→ HLK), while by increasing the Ṁ , the kite-tail is shifted to the low entropy region.

It must also be noted that, if the gravitational interaction was dictated by Newtonian

potential, then a Bc—Ṁc curve will not have XS (OL) branch, in other words, Bc—rc

curves will have a maxima but no minima (see in Appendix A, Fig. A.1 a, b). The

importance of Bc—Ṁc plot, is to look for the possibility of shock jump between the

inner and outer sonic points. In the range of MCP region, if the inner sonic point is

of higher entropy than that due to the outer sonic point, then there is a possibility of
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Figure 3.7: (a) Bc as a function of rc, (b) Bc versus Ṁc, (c) logΘc and (d) (Γc)
versus rc for rotation periods P = 0.16s (solid, black), 0.25s (dotted, red), 0.5s (dashed,
blue), 1.0s (long-dashed, darkgreen) and 20.0 (dash-dotted, magenta). For accretion
rates, Ṁ0.16s = 0.56× 1015g s−1 , Ṁ0.25s = 0.88× 1015g s−1, Ṁ0.5s = 1.8× 1015g s−1,
Ṁ1.0s = 3.51× 1015g s−1 and Ṁ20.0s = 7× 1016g s−1. For all the plots ξ = 1 (Singh &
Chattopadhyay, 2018b).

shock transition in accretion, within the inner and outer sonic point region.

We know that there is a correlation between rotation period and surface mag-

netic field of neutron stars (Camilo et al., 1994; Lamb et al., 2005; Pan et al., 2013).

Following, Pan et al. (2013), we assume a simple relation between surface magnetic

field and rotation period (in cgs units) as Bp◦ = 100.583logP+10G, and therefore reduce

one of the input parameters. By using this relation, we have plotted the Bc (Fig. 3.7

a), Θc (Fig. 3.7 c) and Γc (Fig. 3.7 d) versus rc. Each of the curves were plotted

for rotation periods P = 0.16s (solid, black), 0.25s (dotted, red), 0.5s (dashed, blue),

1.0s (long-dashed, darkgreen) and 20.0s (dash-dotted, magenta). All the curves are

plotted for Ṁ0.16s = 0.56 × 1015g s−1, Ṁ0.25s = 0.88 × 1015g s−1, Ṁ0.5s = 1.8 × 1015g s−1,
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Ṁ1.0s = 3.51 × 1015g s−1, Ṁ20.0s = 7 × 1016g s−1 and ξ = 1. The Bc—rc plot is quite dif-

ferent from pure hydrodynamic case (Kumar & Chattopadhyay, 2013). In general Bc

has one Bcmax and one Bcmin. Unlike the pure hydrodynamic case, the location of Bcmax

and Bcmin approaches each other, with decreasing P (or increasing rotation). Eventu-

ally, the maxima and minima merge at P = 0.16s. The dip between a Bcmax and Bcmin

increases as P increases from 0.16s — 1s. However, for a very large value of P (= 20s),

the dip decreases and finally only monotonic variation of Bc with rc is possible for very

low rotation. As is expected Θc and Γc do not show the presence of extrema. Since Γ

is a function of Θ and ξ, Γc is not constant. In Fig. 3.7 (b), we plot Bc versus Ṁc were

the curves are for the same values of P as mentioned above. Interestingly, the kite-tail

do not form for P = 0.16s (solid, black), and starts to form as P is increased. The area

encompassed by the kite-tail also increases as P → 0.25—1.0. However, for very high

P , the Bc—Ṁc curve do not form a kite tail and it opens up.

One would like to know, for a given ρd what is the range of flow parameters (B and

P ), for which multiple sonic points are possible and what would be the typical solution

for a certain combination of B and P . In Fig. 3.8 (a), we plot the locus of Bcmax (AB) and

Bcmin (AFE) as a function of P keeping ρd = 10−10g cm−3 same, for an electron-proton

flow. Therefore, flows with any pair of B, P parameters within the bounded region

BAFE, would harbour multiple sonic points (two or three). From the Bc—rc plots we

have seen that there exists a maximum value of sonic points (rcl), which corresponds to

Bcl in terms of Bernoulli parameter (marked in Fig. 3.6 a, c). Plotting Bcl as a function

of P , produces the curve GFD in B—P space (Fig. 3.8 a). Depending on P , Bcl < Bcmin,

or may also be Bcl > Bcmin. Flows with parameters within the region DFE (i.e., where,

Bcl > Bcmin), have only two sonic points and do not produce global solutions (i. e.,

solutions connecting rd and R◦). Flow parameters from the region bounded by GFE

(shaded with slanted curves) can never be transonic. Parameters from the region BAFD

(shaded with vertical dashed curves) produce flows containing three sonic points and

AC (thin black curve within BAFD region) is the same entropy curve i.e., inner and outer

critical point has the same entropy. The thin shaded strip AHIA within the region for

three sonic point, harbours second shock at a larger distance from the star’s surface. In

B—P parameter space, we mark various coordinate points as β (B = 0.99902, P = 0.1s), γ

(B = 0.99902, P = 1s), ε (B = 0.99877, P = 1s), ι (B = 0.9986, P = 1s), λ (B = 0.9986, P = 3s),

τ (B = 0.99814, P = 1s) and ν (B = 0.99814, P = 0.1s). Here accretion rates, Ṁ0.1s =

0.35 × 1015g s−1 , Ṁ1.0s = 3.51 × 1015g s−1 and Ṁ3.0s = 1.1 × 1016g s−1. Each such point

is the representative of the domain in the parameter space. In Fig. 3.8 (β—ν), starting
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Figure 3.8: (a) Parameter space Bc−P shows MCP region bounded by BAFE (solid,
black). The shaded region CAFDC (dashed, red) produces three rc. Region DFE
produces two rc. GFD is the curve of Bcl as a function of P . AHIA is the second
shock parameter space. The region below GFE (shaded with slanted curves) do not
produce transonic solutions. Points, β, ε, ι, λ, τ and ν are coordinate points which
represents various regions in Bc—Ṁc space. Corresponding solutions M versus r are
plotted in identically named panels (β—ν). Accretion solutions (solid, red), shock
transitions (dotted, blue), wind type or multi valued solutions (dashed, black). Here,
Ṁ0.1s = 0.35 × 1015g s−1 , Ṁ1.0s = 3.51 × 1015g s−1 and Ṁ3.0s = 1.1 × 1016g s−1 and
ξ = 1 (Singh & Chattopadhyay, 2018b).

from top left corner in a clock wise manner, we plot the accretion solutions i.e., Mach

number M = vp/cs as a function of r, corresponding to the coordinate points β—ν in

Fig. 3.8 (a). The panels are named similar to the coordinate points in B—P parameter

space. The physical accretion solutions (solid, red) connects rd to R◦. The dotted

blue vertical curves represent shock transition. The dashed (black) curve represent

either wind type or multi-valued solutions and cannot be considered proper accretion

solutions. In general, the crossing points in the solutions signifies the location of sonic

points rc. For three sonic point region (coordinate points ε and ι), the middle spiral type
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sonic point is not shown but is typically located near the region where dM/dr → 0 for

an upper or lower branch. In order to understand how P and B affects the solutions,

we started with the β point, kept the same B but increased P to reach to the point γ.

Then kept P same and reduced B to reach ε and ι and τ . Then again, kept the same

B as τ , but decreased P to reach to ν, where the P of ν and β are the same. Point

β is high energy but low P (i.e., high spin). Higher spin causes the matter to rotate

faster, and thus a significant portion of B is in the form of rotational energy. Therefore,

to become transonic, the flow would gain the required magnitude of vp, only by going

closer to the central object. Increasing the P (i.e., at the point γ) by a moderate amount,

reduces the rotation energy and therefore the interplay between gravity and centrifugal

terms generate multiple sonic points, although the global solution is still through the

inner sonic point. Reducing the specific energy or B further, makes the rotational and

gravity terms comparable enough, not only to cause the accretion flow to pass through

the outer sonic point, but can also trigger a shock transition between inner and outer

sonic points (ε). If the energy is reduced even further, then the flow pressure decreases

to the extent, such that, its combined effect with rotational energy is lower than that of

gravitational pull and hence in spite of the presence of three sonic points, the second

shock do not form. Point λ has the same B as ι, but has much higher P . Such low

rotation, as well as low energy, makes the flow non-transonic, i.e., transonic solution

is not global. Point τ is outside the MCP region and of low energy, so there is only one

sonic point but far away from the central object. Keeping the same B but reducing P ,

causes the sonic point to form closer to the central star. Since the central object has

a hard surface, all the global accretion solutions end with a terminating shock.

To understand the physics of accretion onto a magnetized compact object, we

should compare the distribution of other flow variables in addition to the spatial dis-

tribution of the M . In the left panels of Fig. 3.9, we have plotted the variables logM

(Fig. 3.9 a), logΘ (Fig. 3.9 b), Γ (Fig. 3.9 c) and the cooling rates logQ, logQbr and

logQcycl (Fig. 3.9 d) for the solution corresponding to point β in B—P space (Fig. 3.8

a). We compared the same flow variables for the solution corresponding to the point

ν in (Fig. 3.8 a) in the right panels (Fig. 3.9 e-h). The parameters at point β and ν

are differentiated by B but with the same P . The solution type are therefore similar,

except that the sonic point of higher B solution is located closer to the central object.

The terminating shock is located at similar distance in the two cases, and post-shock

flow variables as well as, the cooling rates are also similar. The radiative efficiency of

the pre-shock flow is around 0.05− 0.06 but that of the post- shock flow is about 0.3.
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Figure 3.9: Variation of logM (a, e); logΘ (b, f); Γ (c, g); total radiative losses in
log scale Q (long-dashed, green), bremsstrahlung losses Qbr (solid, black) and cyclotron
losses Qcycl (dashed, red) in panels (d, h) as a function of r. Comparison of solutions
corresponding to coordinate points β (a, b, c, d) and ν (e, f, g, h) of parameter space
in Fig. (3.8 a). The inset in panels a, b, d zooms the inner shock region. Here,
Ṁβ,ν = 0.35× 1015g s−1 and ξ = 1 (Singh & Chattopadhyay, 2018b).

In Fig. 3.10, we compare flow variables of two solutions in the parameter space

range for three sonic points. On the left panels, we plot logM (Fig. 3.10 a), logΘ (Fig.

3.10 b), Γ (Fig. 3.10 c) and the cooling rates logQ, logQbr and logQcycl (Fig. 3.10 d) for

the solution corresponding to point ε in B—P space (Fig. 3.8 a). This solution harbours

two shocks (dotted blue vertical). In the right panels, we plot the same corresponding

variables (Fig. 3.10 e-h), but now for the parameters which characterizes coordinate

point ι in the parameter space of Fig. 3.8 (a). This set of parameters also produces three

sonic points, but shock condition for the second shock is not satisfied. The temperature

of the two shocked solutions (corresponding to ε) is slightly higher, and the Q is also
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Figure 3.10: Variation of logM (a, e); logΘ (b,f); Γ (c,g); total radiative losses in log
scale Q (long-dashed, green), bremsstrahlung losses Qbr (solid, black) and cyclotron
losses Qcycl (dashed, red) in panels (d, h) as a function of r. Comparison of solutions
corresponding to coordinate points ε (a, b, c, d) and ι (e, f, g, h) of parameter space
in Fig. (3.8 a). Here, Ṁε,ι = 3.51 × 1015g s−1 and ξ = 1 (Singh & Chattopadhyay,
2018b).

slightly higher than the one shock solution (corresponding to ι). The second shock is

noticeably weaker than the terminating shock close to the star’s surface.

Solutions with higher and lower rotation periods are also compared for low energy.

These solutions are outside the MCP region. In the left panels, we plot logM (Fig. 3.11

a), logΘ (Fig. 3.11 b), Γ (Fig. 3.11 c) and the cooling rates logQ, logQbr and logQcycl (Fig.

3.11 d) for the solution corresponding to point τ in B—P space (Fig. 3.8 a). In the right

panels, we plot the same set of variables (Fig. 3.11 e-h), but now for the parameters of

the coordinate point ν in the parameter space of Fig. 3.8 (a). The solution with smaller

rotation period is colder (τ ) than the flow with higher rotation period (ν).

The accretion solutions presented in this study has some interesting features.
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Figure 3.11: Variation of logM (a, e); logΘ (b, f); Γ (c, g); total radiative losses in
log scale Q (long-dashed, green), bremsstrahlung losses Qbr (solid, black) and cyclotron
losses Qcycl (dashed, red) in panels (d, h) as a function of r. Comparison of solutions
corresponding to coordinate points τ (a, b, c, d) and ν (e, f, g, h) of parameter space
in Fig. (3.8 a). Here, Ṁτ = 3.51× 1015g s−1, Ṁν = 0.35× 1015g s−1 and ξ = 1 (Singh
& Chattopadhyay, 2018b).

Within a distance of 100rg from the star’s surface, accretion streamlines are almost

radial (i.e., rcos(θ) = rsin(θ)). However, because of the bipolar magnetic field controls

the accretion cross-section, therefore close to the stellar surface, the cross-section is

smaller than ∼ r2. This makes ρ to be larger than a purely radial accretion (i.e., Bondi

accretion, Bondi, 1952), and consequently the cooling rates are higher than typical

Bondi type accretion. As a consequence of enhanced cooling, the temperature dips

in the region within about a 10rg and the location of the terminating shock. This dip

in Θ is seen all the temperature distributions presented above. In one compares the

temperature distribution of a global solution without cooling, such dips are not found

(Fig. A.1 c).
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Figure 3.12: (a) The shock location rsh, (b) compression ratio R, (c) shock strength
S and (d) temperature ratio RΘ are plotted as a function of rotation period P for
B = 0.99891 (solid, blue), B = 0.9983 (long-dashed, red) and B = 0.997 (dashed,
green). Here, Ṁ0.01s = 0.35 × 1014g s−1 − Ṁ2.5s = 9 × 1015g s−1 and ξ = 1 (Singh &
Chattopadhyay, 2018b).

It is clear that for a given ρd, the properties of the accretion is determined by B and

P . Therefore the shock properties should also have some dependence on these two flow

parameters. In Fig. 3.12 (a), rsh is plotted as a function of P . The inner terminating

shock is almost horizontal over-plotted curves close to the star’s surface around 2−3rg

in the panel. The inner shock decreases very weakly with the increase of P and has

almost no dependence on B. The second shock is represented by the curves at few

×10—100rg. In Fig. 3.12 (b, c, d), the corresponding compression ratio R = ρ+/ρ−,

shock strength S = M−/M+ and the temperature ratio RΘ = Θ+/Θ− respectively, are

plotted as a function of P . Each curve is for B = 0.99891 (solid, blue), B = 0.9983 (long-

dashed, red) and B = 0.997 (dashed, green). The inner shock locations for various

B overplot on each other, and therefore, are zoomed in the inset of panel Fig. 3.12
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(a). Since the parameter space for transonic solutions are limited by the GFHD curve

(Fig. 3.8 a) i.e., whole range of rotation period is not available for all energy (B) values.

Therefore, the inner shock is limited for B = 0.997 (dashed, green). No second shock

is found for this energy parameter for any value of P . For a little higher B = 0.9983

for a (long-dashed, red), the inner shock is obtained for P <∼ 1.1 (see the inset). Second

shock is obtained for a very short range of P ∼ 0.3851−0.3862s and the location range of

the second shock is 48.3 ≤ rsh ≤ 88.5. For B = 0.99891 the inner shock exist for a range

of P <∼ 2.54 (solid, blue). The second shock is in the limited range of 1.6 <∼ P <∼ 2.54,

and the second shock is also located far away from the star’s surface 140 ≤ rsh ≤ 295.

The compression ratio R (Fig. 3.12 b) of the inner shock is very high R ∼ 6 and is

almost independent of B but is very weakly dependent on P . The R of the outer shock

is B dependent. R <∼ 1.4 (long-dashed, red) for B = 0.9983 and 2 <∼ R <∼ 3 (solid, blue)

for B = 0.99891. In the inset R for B = 0.9983 is zoomed for second shock. The shock

strength S (Fig. 3.12 c) and temperature ratio RΘ (Fig. 3.12 d) plots also show that the

inner shock to be very strong and depend marginally on B, but the outer shocks do

depend on B and are weak to moderate in strength. The insets in both the panels zoom

the outer shocks for B = 0.9983. We have also calculated post luminosity and found

that the order of magnitude varies with the rotation period. Therefore, the post-shock

luminosity at inner shock is, L0.01s ∼ 1030erg s−1 to L2.5s ∼ 1035erg s−1 and at the outer

shock is L ∼ 1024−26erg s−1.

In Fig. 3.13 (a-d), all the shock variables are plotted for P = 0.1s (solid, blue),

P = 0.5s (long-dashed, red) and P = 2.0s (dashed, green). In Fig. 3.13 (a), rsh is plotted

as a function of B. For P = 0.1s (solid, blue) the shock is formed only close to the star’s

surface and for all values of B. For P = 0.5s (long-dashed, red), the inner terminating

shock forms for all values of B, but at 0.998447 <∼ B <∼ 0.9984497, outer shock forms in

a limited range 55.6 <∼ rsh
<∼ 112. For P = 2s (dashed, green) inner shock forms for

B >∼ 0.99872. Outer shock also forms in the range 0.998896 <∼ B <∼ 0.998949 and located

in a range from 166.6 <∼ rsh
<∼ 323. Although all the inner shock almost overlaps (lower

almost horizontal curves), the outer shock locations are perceptible. In Fig. 3.13

(b), R is plotted as a function of B. R <∼ 6 for the inner shock (upper curves) and all

the curves for P overlaps. The compression ratio of the outer shock (lower slanted

curves) ranges from being weak to moderate. The shock strength S (upper curves in

Fig. 3.13 c) for the inner shock depends significantly on P and are quite high. While

the S parameter for outer shock is comparatively much weaker and are zoomed in

the two inset panels. The RΘ (upper curves in Fig. 3.13 d) parameter for the inner
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Figure 3.13: (a) The shock location rsh, (b) compression ratio R, (c) shock strength
S and (d) temperature ratio (RΘ) across the shock are plotted as a function of B
for three rotation periods P = 0.1s (solid, blue), P = 0.5s (long-dashed, red) and
P = 2.0s (dashed, green). The inset in panel (a) zooms the inner shock locations.
There are two insets in panels (c & d), which zooms the outer shock quantities. Here,
Ṁ0.1s = 0.35 × 1015g s−1, Ṁ0.5s = 1.8 × 1015g s−1, Ṁ2.0s = 7 × 1015g s−1 and ξ = 1
(Singh & Chattopadhyay, 2018b).

shock is higher for higher P and completely dominates the outer shocks (zoomed in

the inset panels in Fig. 3.13 d). The inner shocks are so overwhelmingly strong that

the signatures of the outer shock may not be significant, although might contribute

dynamically if the outer shock is made unstable by some process. In this case, post-

shock luminosity at inner shock does not change significantly with energy and has an

order of magnitude is, L0.1s ∼ 1032erg s−1, L0.5s ∼ 8×1033erg s−1, L2.0s ∼ 1035erg s−1 and

at outer shock the order is L0.5s ∼ 5× 1025erg s−1, L2.0s ∼ 1027erg s−1.



MHD with Relativistic EoS 44

Figure 3.14: (a) B—P parameter space, in which MCP region is demarcated for
ξ = 0.05 (long-dashed magenta), ξ = 0.5 (dashed, blue) and ξ = 1.0 (solid, black). P∗
is the minimum P beyond which MCP is possible. Two coordinate points are marked as
‘σ’ and ε’, the values of B, P corresponding to these points are used to obtain accretion
solutions in Figs. 3.15 and 3.16, respectively. (b) P∗ plotted as a function of ξ. Here,
Ṁ0.01s = 0.35×1014g s−1−Ṁ10.0s = 3.5×1016g s−1 (Singh & Chattopadhyay, 2018b).

3.4.3.1 Effect of ξ

In Fig. 3.14 (a), we plot the MCP region in the B—P parameter space for accretion rate

Ṁ0.01s = 0.35 × 1014g s−1 − Ṁ10.0s = 3.5 × 1016g s−1, but for different ξ. Each bounded

region which represents MCP are for ξ = 1.0 (solid, black), ξ = 0.5 (dashed, blue) and

ξ = 0.05 (long-dashed magenta). There is a certain value of rotation period (say P∗)

below which MCP is not possible. Small rotation period (P < P∗) has small rco or rd.

Therefore, gravity is very strong in the funnel for an accretion system having small

P . If the gravity is too strong then, neither MCP nor, second shock forms. However,

the MCP region (area under the bounded curves) depends significantly on ξ. The area

under the curve shrinks for 0.5 < ξ ≤ 1 and then starts to increase. In fact for lepton



MHD with Relativistic EoS 45

dominated flow (ξ ∼ 0.05) the MCP region is quite significant. This is quite different

from a purely hydrodynamic case. The strong magnetic field criteria increases angular

momentum at larger r. Therefore, in spite of the thermal energy of the small ξ flow is

mostly non-relativistic, but still, the angular momentum is large enough at large r to

modify gravity and produce multiple sonic points. In Fig. 3.13 (b), we have plotted P∗

versus composition parameter ξ. In this figure, we can see that P∗ starts with minimum

value at ξ = 0.0 then becomes maximum at ξ ∼ 0.5. However if ξ further increases, P∗

starts decreasing and reaches its value at ξ = 1.0. Two coordinate points named as σ

(B = 0.99877; P = 0.01s) and ε (B = 0.99877; P = 1s) are marked in the B—P , chosen

to consider high and moderate rotation period of central stars. It may be noted that

the ε point is same as the coordinate point identically named in Fig. 3.8 (a). Accretion

solutions corresponding to these points are compared for different ξ in Figs. 3.15 &

3.16.

In Fig. 3.15 (a-i), we have compared flow variables corresponding to ε in Fig. 3.14

(a), i.e., for B = 0.99877 and P = 1.0s. Each column represents solutions of flows

for the same values of B and P , but of different composition ξ = 1.0 (Fig. 3.15 a-c),

ξ = 0.5 (Fig. 3.15 d-f) and ξ = 0.05 (Fig. 3.15 g-i). In order to compare the solutions

of different ξ, in each row we have plotted logM (Fig. 3.15 a, d, g), logΘ (Fig. 3.15 b,

e, h) and Γ (Fig. 3.15 c, f, i). The same flow parameters B, P produces two shocks for

electron-proton (ξ = 1.0) flow, however, produces only the terminating shock for flows

with ξ = 0.5 and ξ = 0.05. It is clear from Fig. 3.14 (a) that ε is in the zone which

produces multiple shocks for ξ = 1.0, but not for ξ = 0.5 and ξ = 0.05. However,

for ξ = 0.5, the point ε is below the MCP region, but is above the MCP region for

ξ = 0.05. The sonic points for ξ = 0.05 is closer to the star’s surface than that for

ξ = 0.5. The temperature distribution confirms conclusions from earlier hydrodynamic

studies of multispecies flow (Chattopadhyay & Ryu, 2009; Kumar & Chattopadhyay,

2013, 2014; Chattopadhyay & Kumar, 2016; Kumar & Chattopadhyay, 2017), i.e., and

electron-proton flow is hotter than flows dominated by leptons. However, although the

temperature of the flow with ξ = 1.0 is more than an order of magnitude higher than the

flow with ξ = 0.05, but the adiabatic index distribution shows that thermally, ξ = 0.05

flow is more relativistic than the electron-proton flow at around r ∼ 10rg.

In Fig. 3.16 (a-i), we compare the flow variables for the same B as the previous

figure but for higher rotation period P = 0.01s and is marked in the B—P parameter

space as the coordinate point σ (Fig. 3.14 a). Similar to the previous figure, we plot

logM (Fig. 3.16 a, d, g), logΘ (Fig. 3.16 b, e, h) and Γ (Fig. 3.16 c, f, i) as a function of
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Figure 3.15: Variation of logM (a, d, g), logΘ (b, e, h) and Γ (c, f, i) as a function
of r. Each column of panels represent flow characterized by ξ = 1.0 (a-c), ξ = 0.5
(d-f) and ξ = 0.05 (g-i). The physical accretion solutions are solid curves with the
shock jumps depicted as dotted blue vertical curves. The crossing of the dashed and
the solid curves indicate the position of the sonic points. Here Ṁ = 3.51 × 1015g s−1.
The solutions correspond to point ε or B = 0.99877 and P = 1s in the B—P parameter
space of Fig. 3.14 (a) (Singh & Chattopadhyay, 2018b).

r. Panels in each column presents distribution of various flow variables for the same

B and P but for different flow composition ξ = 1.0 (Fig. 3.16 a-c), ξ = 0.5 (Fig. 3.16 d-f)

and ξ = 0.05 (Fig. 3.16 g-i). For the parameters of σ, there are no MCP for any ξ and

consequently only forms the terminating shock close to the star’s surface. However, the

solutions differ from each other depending on ξ. Apart from the difference in location of

the sonic points (crossing between solid and dashed curves), the size of the post-shock

region for ξ = 1.0 is larger than lepton dominated flows. The temperature distribution

for the electron-proton flow is higher, but because of the enhanced inertia of larger

fraction of protons, Γ shows that lepton dominated flow are thermally more relativistic

than the electron-proton flow.
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Figure 3.16: Variation of logM (a, d, g), logΘ (b, e, h) and Γ (c, f, i) as a function
of r. Each column of panels represent flow characterized by ξ = 1.0 (a-c), ξ = 0.5
(d-f) and ξ = 0.05 (g-i). The physical accretion solutions are solid curves with the
shock jumps depicted as dotted blue vertical curves. Here Ṁ = 0.35× 1014g s−1. The
solutions correspond to point σ or B = 0.99877 and P = 0.01s in the B—P parameter
space of Fig. 3.14 (a) (Singh & Chattopadhyay, 2018b).

3.4.3.2 White Dwarf type compact object

Among the three accepted versions of compact objects like a black hole, NS or a WD, all

have very strong gravity, although black holes have a very unique property of having no

hard boundary and are only screened from the outside universe by one way, imaginary

surface called the event horizon. Since we are only concentrating on magnetized accre-

tion flow onto compact objects with a hard surface, therefore black holes are beyond

the scope of this analysis. The related defining property that separates gravitation

interaction that these objects impose on the surrounding matter is the compactness

parameter or M◦/R◦. In geometric units, the compactness parameter for black holes

M◦/R◦ = 1; for NS it is 0.5 <∼M◦/R◦ <∼ 0.66 and for WDs M◦/R◦ ∼ few × 10−4. Larger
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Figure 3.17: Magnetized accretion solution for WD. Plotted the variation of logM
(a), logvp (b), logΘ (c) and Γ (d) as a function of r. The physical accretion solutions
(solid, red), shock jumps (dotted, blue vertical curves) and wind type solutions (dashed,
black) are shown. Sonic point is at the crossing of accretion and wind type solutions.
Central object is WD with M◦ = 1.2M⊙, R◦ = 3.8 × 108cm, Bp◦ = 3 × 107G and

P = 12150s. The solutions corresponds to B = 0.9999968 and Ṁ = 5.54 × 1015g s−1

(Singh & Chattopadhyay, 2018b).

the compactness parameter, i.e., larger the mass packed in a finite volume, stronger is

the gravity of the object, with black holes having the strongest gravity. Up to now, we

have used compactness ratio in tune with the description of NS and all our solutions

above can be thought to represent accreting NS cases. In the following, we change the

central star properties to mimic accretion processes of a WD and still using the same

methodology of solution.

The mass and radius of central star used to mimic a WD is M◦ = 1.2M⊙, R◦ = 3.8×

108cm, the surface magnetic field as Bp◦ = 3×107G and the rotation period P = 12150s.

It is quite clear that a WD has quite low compactness ratio, infact in units of rg, the

radius of the WD is R◦ = 1.072× 103rg. Given the central star’s parameters as assumed
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above, we need to supply two parameters to B = 0.9999968 and Ṁ = 5.54× 1015g s−1 we

can obtain the accretion solution. In Fig. 3.17 (a), we plot logM as a function of r. The

solid (red) curve represents accretion solution, the dotted blue vertical curve represent

the shock transition. The dashed curve is the wind type solution (obtained with wind

type boundary conditions) and its crossing with the accretion branch determines the

location of the sonic point. The accretion column terminates on the star’s surface

after suffering the terminating shock. Other flow variables of the accretion column are

logvp (Fig. 3.17 b), logΘ (Fig. 3.17 c) and Γ (Fig. 3.17 d). Since the WD accretion does

not achieve relativistic temperature so we only considered electron-proton flow. The

shock location obtained from our calculations is rsh = 1.1577 × 103rg, the post-shock

temperature is ∼ 8.313 × 108K and the post-shock density is ∼ 4.672 × 10−9g cm−3.

Therefore the shock height comes out to be 0.08R◦ for the WD. Observational studies

are in general agreement with the numbers generated by us (Rana et al., 2005). A more

exact agreement can be obtained if all the dissipative processes, accretion rate and the

Bernoulli integral are chosen properly.

3.5 Discussion and Concluding Remarks

We have studied the magnetized accretion solution onto a compact object which has a

strong magnetic field and hard surface. Since the gravity of a compact object is stronger

than Newtonian potential, we used pseudo-Newtonian potential (PWP). We first study

the magnetized accretion with fixed EoS to develop the mathematical and numerical

methodology to find the solution with the inclusion of cooling e.g., bremsstrahlung and

cyclotron. However, as the accretion flow traverses the large distance, in the course

of which the temperature varies two to four orders of magnitude. So, we also stud-

ied the magnetized accretion with temperature dependent Γ or CR EoS to describe the

fluid. The advantage of PWP is that at large distance it is essentially Newtonian, and

the advantage of CR EoS is that, it takes care of the adiabatic index at all tempera-

tures and at temperature 107K, it behaves like fixed adiabatic index EoS with Γ ∼ 5/3

(Chattopadhyay & Ryu, 2009). Therefore, the mathematical tools we have employed

will enable us to go from weak gravity to a stronger one, as well as from low to very

high temperatures. We have compared the sonic point properties of accretion flows un-

der the influence of Newtonian gravity and PW gravity using fixed adiabatic index EoS

(subsection 3.4.1) and CR EoS (Appendix A). Since Newtonian gravity do not allow the

formation of inner sonic point, therefore in presence of rotation all accretion solutions
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possess two sonic points, the outer X-type and the inner O-type (without dissipation).

As a result, all accretion solutions would fold back in the form of an α (see discussions

in Chattopadhyay & Kumar, 2016; Kumar & Chattopadhyay, 2017). Only some of the

B and P combinations would allow the turning radius to be less than the star radius

(e.g., Fig. 4 a in Koldoba et al., 2002). Only B < 0.9981 (without the rest mass energy

B < −0.0019) corresponds to a ‘global’ solution i.e., connect rd and R◦. However, in PW

gravity i.e., a stronger gravity, global solutions are available for all available B > Bcl.

The velocity of the accreting matter is supersonic close to the star’s surface, but for

a stable accretion solution it has to either stop or co-rotate with the star on its surface.

Since the post-shock density and temperature is high, as well as, the presence of the

magnetic field, cooling processes dominate and helps to minimize the infall velocity of

the accretion flow on the star’s surface. Therefore, in this analysis, all the accretion

solution ends on the star’s surface with a terminating shock very close to the star’s

surface, unlike Koldoba et al. (2002) and Karino & Kino (2008). The terminating shocks

are very strong (Figs. 3.12, 3.13) and therefore likely to contribute significantly to the

total electromagnetic output of the system (Figs. 3.9 d,h; 3.10 d,f; 3.11 d,h).

We have calculated the total luminosity for different solutions and found that order

of magnitude is 1034−36erg s−1. Also, the optical depth for different solutions which

remains less ∼ 0.1. Therefore, plasma is optically thin and radiations from cooling

processes can escape (Saxton et al. (1998), and Busschaert et al. (2015)) and flow gets

cooled. The effect of cooling is observed in the temperature distribution of the flow,

where enhanced cooling reduces the temperature of the flow before the terminating

shock, as well as, the post-shock flow just above the star’s surface. There are no such

dips in temperature in the accretion flow if cooling processes are ignored (Figs. 3.2,

A.1 c).

Stronger gravity of PW potential causes the formation of MCP (multiple critical

point) region in the B—P parameter space. This produces various accretion solutions,

some of which admits a second shock. While the terminating strong shocks, which

accompanies all global accretion solutions, are very strong R ∼ 6 and close to the

star’s surface rsh → 2.5 − 3rg, but second shocks are weaker < 3 and located much

further out rsh
>∼ few times 10rg. The electromagnetic signature of this second shock

is likely to be washed out in the steady state scenario, but shock oscillation induced

by various dissipation processes might give rise to many interesting phenomena. The

most interesting fact is that the two post-shock regions are separated by a supersonic

region, therefore the second shock is acoustically separated from the terminating shock
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closer to the star’s surface, although the oscillations in the second shock in principle

can make the terminating shock time dependent. How this will pan out in terms of

observation, needs to be determined through numerical simulations and is currently

beyond the scope of this study.

Although there is a general agreement on various features with hydrodynamic

black hole accretion solutions, there are some significant differences as well. The

cross-sectional area of the accretion is smaller than a typical ∼ r2 cross section ex-

pected in the inner region of a black hole accretion disc. Therefore, the density of

matter near a NS or WD surface is much larger than the one near the black hole hori-

zon. As a result, bremsstrahlung, cyclotron and other cooling processes are much

more important near the star’s surface than a black hole.

Another important difference is the sonic point properties. In the hydrodynamic

case, rc can be as large as possible and for rc → large, Bc → 1. However, in the

present case, maximum of rc possible is rcl and the corresponding energy is Bcl. So,

in the case of purely hydrodynamic flow, X-type sonic points for global solutions are

obtained if B > 1, but here X-type sonic points related to a global solution are obtained

if B > Bcl. Since CR EoS also contains the information of composition, therefore we

also studied how the proton content affects the solution. In the purely hydrodynamic

case, the proton poor flow is thermally non-relativistic and the MCP region is small

and vanishes for ξ = 0. But in the present case, the MCP region is large for proton poor

flow. This is because, the strong magnetic field decreases angular momentum close to

the star, but increases at a larger distance. So whatever may be the thermal state of

the flow, centrifugal interaction alone is important enough at large distance to modify

gravity and produce multiple sonic points. So even for ξ ∼ 0 flow, multiple sonic points,

and second shocks are possible in the presence of the magnetic field.

In conclusion, we obtained solutions of the accretion flow onto a magnetized com-

pact star, in presence of bremsstrahlung and cyclotron cooling, in the strong magnetic

field approximation. We also used the variable Γ EoS to describe the fluid. All global

accretion solution forms a very strong terminating shock near the star surface. This

terminating shock also contributes significantly to the total radiation budget of these

accretion systems. There is also a possibility of forming multiple sonic points in a

limited range of flow parameters. A weak to moderately strong shock at a distance of

about hundred rg is formed for flows characterized by the parameters from this limited

range of parameters. Accretion flow with two shocks are a class of interesting solu-

tions and its implication need to be investigated further. The same methodology can
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be employed for NS or WD type compact objects. A typical accretion solution onto a

WD type compact object generates satisfactory post- shock properties.



Chapter 4

Effect of Composition on

Magnetized Outflows

4.1 Overview

In Chapter 3, we have studied the accretion flow in a defined magnetic field geometry

onto compact object. In this chapter, we focus on the wind outflow in the equatorial

plane of central object in self-consistent magnetic field without cooling. We study equa-

torial wind outflow from compact stars by extending Weber & Davis (1967) (abbreviated

as WD) model. We concentrate on the role, that correct thermodynamics of the plasma

may play on the WD type wind solutions. We consider a CR EoS and obtain outflow

solutions for winds around compact objects using PWP to study the behaviour around

a stronger gravity. However, we would like to understand the role which strong gravity

might play on such wind solutions as well, by comparing with the winds in Newtonian

potential. We study how the magnetic field affects the formation of critical points and

parameter space by comparing Bondi (i.e., radial), rotating (i.e., Bondi + rotation) and

magnetized rotating (Bondi + rotation + magnetic field) outflows. In magnetized rotat-

ing outflow, we have shown that a solution passes through all the critical points is a

plausible solution for wind outflows. We discuss the exchange of energy in different

forms and the effect of magnetic force throughout the flow. Further, we study param-

eter space and solutions for different angular momentum, energy and composition of

the flow. We calculate the streamlines and magnetic field lines, and show that how the

rotation of the flow effect configuration of the flow. Plasma composition controls the

53
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thermal energy and inertia of the flow, so we study its effect on flows having different

energy. These results are published in Singh & Chattopadhyay (2019a).

4.2 MHD equations and assumptions

4.2.1 Governing equations

We used MHD equations which mentioned in 2.2 with assumptions of the flow is steady,

inviscid and highly conducting plasma. Assuming ideal MHD, we integrate MHD equa-

tions along magnetic field lines and axis symmetry assumption to obtain the conserved

quantities as:

(i) The mass flux conservation is obtained from the continuity equation (2.1),

ρvrr
2 = constant = Ṁ, (4.1)

(ii) The magnetic flux conservation is obtained from the Maxwell’s equation (2.2),

Brr
2 = constant = B◦r

2
◦, (4.2)

(iii) The Faraday equation (2.3), for highly conducting fluid gives,

r(vrBφ − vφBr) = constant = −ΩBrr
2, (4.3)

(iv) r-component of momentum balance equation (2.4) gives the total energy conser-

vation,
1

2
v2

r +
1

2
v2
φ + h+ Φ(r)− BφBrΩr

4πρvr
= constant = E, (4.4)

(v) φ-component of momentum balance equation (2.4) gives the total angular mo-

mentum conservation,

rvφ −
BφBrr

4πρvr
= constant = L. (4.5)

Here r is the radial distance, r◦ is the radius of a star, or, the radial distance near

black hole, ρ is the mass density, vr is the radial velocity component, vφ is the azimuthal

velocity component, Br is the radial magnetic field and subscript ‘◦’ denote the magnetic

field at distance r◦, Bφ is the azimuthal magnetic field, Ω is the angular velocity of star
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or matter at r◦. In equation (4.5), we see that total angular momentum has two terms,

the first term is the angular momentum associated with matter and the second term

represents the angular momentum associated with the magnetic field. Therefore, only

sum of both angular momenta is conserved and not the individual entities. This also

means angular momentum can transfer between matter to field and vice-versa. The

radial Alfvénic Mach number is defined by

M2
A =

4πρv2
r

B2
r

, (4.6)

From equations (4.3) and (4.5), we can derive the expression for vφ,

vφ = Ωr
(M2

ALr
−2Ω−1 − 1)

(M2
A − 1)

. (4.7)

4.2.2 Entropy Accretion Rate and Sound Speed

As we discussed in section 2.4.2 the adiabatic relation can be obtained by integrating

the 1st law of thermodynamics with the help of the continuity equation,

ρ = Qexp(k3)Θ3/2(3Θ + 2)k1(3Θ + 2/η)k2 , (4.8)

where, k1 = 3(2− ξ)/4, k2 = 3ξ/4 and k3 = (f −K)/(2Θ) and Q is the measure of entropy.

Using equation (4.1), the entropy accretion rate Ṁ is given by,

Ṁ = vrr
2exp(k3)Θ3/2(3Θ + 2)k1(3Θ + 2/η)k2 . (4.9)

One may note that, Ṁ is a temperature and composition dependent measure of entropy,

which remains constant along a non-dissipative flow, or in absence of shocks. The

sound speed is given by

c2s =
2ΓΘc2

K
. (4.10)

4.3 Methodology

We know that plasma has three signal speeds i.e., slow magnetosonic speed (uS), Alfvén

speed (in our case we are using radial Alfvén speed uA) and fast magnetosonic speed

(uF) and in the present case, the order of these speeds are uS < uA < uF. We know

that for outflows, radial velocity (vr) is very small near the surface of star or a radius
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near the black hole, therefore, MA � 1 and very far from the central object, MA � 1.

Therefore, at a certain radius (say rA), vr is equal to uA (i.e., vr|rA ≡ vAr = uA) but at

that radius, denominator of vφ is zero (see equation 4.7). Thus the numerator should

also be zero at that critical radius to make vφ always finite and this point is known as

Alfvén critical point. Therefore, numerator of vφ gives a relation between the critical

radius of the Alfvénic point and total angular momentum,

L = Ωr2
A. (4.11)

Using equations (4.1), (4.2) and (4.6), we can also write M2
A as,

M2
A =

vrr
2

vArr2
A

=
ρA

ρ
. (4.12)

and vφ and Bφ become,

vφ =
Ωr

vAr

(
vAr − vr

1−M2
A

)
and Bφ = −Br

Ωr

vArr2
A

(
r2
A − r2

1−M2
A

)
. (4.13)

The r-component of momentum balance equation (2.4) gives the equation of mo-

tion,
dvr

dr
=
N
D
, (4.14)

N = vrr

{(
2c2s
r2
− Φ

′
(r)

r

)
(M2

A − 1)3 + Ω2

(
vr

vAr
− 1

)[
(M2

A + 1)
vr

vAr
− 3M2

A + 1

]}

D =
(
v2

r − c2s
)

(M2
A − 1)3 − Ω2

r2
M4

A

(
r2 − r2

A

)2
.

To find wind solution, we need two input parameters i.e., E, L, initial boundary con-

ditions and composition of flow ξ which is free parameter. In our case, we use Alfvén

point rA as the initial condition because at that radius equation (4.14) or dvr/dr → 0/0.

Thus equating the numerator and denominator to zero, provides us with the criti-

cal point conditions and hence acts as mathematical boundary conditions. However,

dvr/dr → 0/0 at other critical points when vr = uS or vr = uF. These critical points are

known as the slow critical point (rS) or the fast critical point (rF), respectively. There-

fore, N = 0 and D = 0 are the critical point conditions to find the all critical point (slow

points, Alfv én points, fast points and they can either be X-type or O-type) for a given

set of input parameters. We have found that for a small energy range and given angular

momentum, there exists possibility of five critical points. By supplying total angular
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Figure 4.1: In this plot, total energy (Ec) is plotted versus critical radius (rc) for Bondi
flow (dashed, green), Bondi flow with rotation (long-dashed, red) and magnetized,
rotating flow (solid, blue) for L = 1.75. Thin dashed curve represent E=1.04257 (Singh
& Chattopadhyay, 2019a).

momentum L, rA and vAr, from the critical point conditions we can find out critical

radius (rc) and critical radial velocity vrc. Then, the total energy E = Ec at the critical

point can be calculated from equation (4.4) and entropy accretion rate (Ṁ = Ṁc) from

equation (4.10). With the help of L’Hospital’s rule, we determine the gradient of vr at

the critical points. We integrate the equation of motion forward and backward from

the critical points with the help of Runge-Kutta 4th order method and find the complete

wind solution.

4.4 Analysis and Results

We considered the speed of light in vacuum (c) and Schwarzschild radius (rg) as the

unit of velocity and distance, respectively. Since the Alfvén point is the initial condition,

we supply them to obtain solutions of magnetized winds. In Fig. 4.1, we have plotted

Bernoulli parameter or specific energy (Ec) as a function of critical radius (rc) for Bondi

flow (dashed, green), Bondi flow with rotation (long-dashed, red) and Bondi flow with

both the rotation and magnetic field (solid, blue) for a flow with composition ξ = 1. For



MHD with Relativistic EoS 58

rotating flow L = 1.75, additionally for magnetized wind, rA = 11.85 and vAr = 0.167. The

strong gravity is mimicked by PW potential. Purely Bondi flow (i. e., hydrodynamic flow

and only radial velocity component) harbours a single critical point (a sonic point where

vr = cs) for any value of rc, which is clear from the dashed (green) curve, which is a

monotonically decreasing function of r. It may be noted, that the sonic or critical point

occurs in a fluid, due to the presence of gravity. A sufficiently hot gas confined very

close to the central object would expand against gravity. However, due to ∼ (r − rg)−2

nature of gravity, it will fall faster than the thermal term (2c2s/r). Since the kinetic term

gains at the expense of both gravity and thermal term, at some point vr ≥ cs, i. e,

the flow becomes transonic at the critical point. The Ec—rc curve (dashed, green) is a

monotonically decreasing function, and therefore, for any given E = Ec the Bondi flow

admits only one sonic point.

However, for a Bondi-rotating flow (hydrodynamic, vr and vφ components), the ef-

fective gravity deviates from its usual ∼ (r − rg)−2 form due to the presence of the

centrifugal term v2
φ/r. This interplay of rotation and gravity produces multiple son-

ic/critical points, which is also clear from the Ec—rc curve (long-dashed, red). Ec—rc

curve has a maximum and minimum for flows with L above a certain value. Therefore,

for any value of E = Ec within the two extrema, the flow would harbour multiple critical

points.

Hydrodynamics is relatively simple, since in this regime there is only one signal

speed i. e., the sound speed (cs) which is basically the propagating pressure pertur-

bations and are isotropic in nature. Magnetized flow (solid, blue) is entirely a different

ball game. As has been mentioned above, there are three signal speeds in a magnetized

plasma i.e., slow speed, Alfvén speed and fast speed. It may be noted that propaga-

tion of the perturbations of the magnetic field is the Alfvén wave, but the competition

between magnetic and plasma pressure gives rise to the slow and fast magnetosonic

waves. When the plasma pressure and magnetic pressure works in phase, it is fast

wave, if not then it is slow. This is precisely the reason we have three signal speeds

in a magnetized plasma. Even the nature of these three waves are different, Alfvén is

a transverse wave, while fast and slow waves are longitudinal. Moreover, while Alfvén

and slow waves are not isotropic, but fast wave is quasi-isotropic. Hence, instead of

sonic points (vr = cs) as we find in hydrodynamic regime, for magnetized plasma, we

have slow (vr = uS), fast (vr = uF) magnetosonic points and Alfvén (vr = uA) point.

Above, we have discussed that multiple critical points may arise in non-magnetized

plasma because of the presence of angular momentum. This also applies in magnetized
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plasma too. However, the additional feature is the plasma angular momentum is itself

modified by the magnetic field (equation 4.5), therefore the effective gravity is modified

by the plasma angular momentum as well as the magnetic field components. In other

words, addition of rotation in magnetized plasma leads to the existence of one to four

critical points in general, but within a small energy range (Ec) we have found five critical

points. It means the flow can either be super-slow (vr > uS) and/or super-Alfvén (vr >

uA) and/or super-fast (vr > uF) or we can say that flow can pass through one critical

point or through multiple critical points similar to WD wind solution (Weber & Davis,

1967). Curve marked BC represent X-type slow points, CD represents O-type slow

points, DE is O-type fast points. Points on the curve EG are X-type fast points, while

GH curve are O-type fast points. Curve IJ is another set of X-type slow points. The

thin, dashed curve is for E = 1.04257, which represents the outflow solution in the next

figure, passes through slow, Alf vén, and fast points, or is equivalent to the classical

WD solution.

In Fig. 4.2 (a), we plot the Ec with Ṁc corresponding to the curves of Fig. 4.1. The

zones marked BC, CD, DE, EG, and GH are shown on this figure too. The parameters

corresponding to the solid box (red) correspond to the outflow solution which passes

through the slow, Alfv́en and fast points (i. e, the outflow is trans-slow, trans-Alfv́en,

trans-fast). Fig. 4.2 (a) clearly shows that, wind represented by the solid box (red),

possesses the same entropy (Ṁc) and energy Ec in all the three critical points. The

solid inverted triangle represents a flow which has the same specific energy and total

angular momentum as the flow represented by the solid box, but passes only through

the slow and/or Alfvén critical points and has lower entropy. One may remember, that

to find the solutions, we have to supply rA along with E, L and ξ, and obtain the value of

vAr by iteration. We choose rA = 11.85 for all the solutions in this study, till mentioned

otherwise. In Fig. 4.2 (b), we plot the actual outflow solutions, corresponding to the

parameters of the solid square of Fig. 4.2 (a). It may be noted vAr = 0.167 in this

case. The solid (red) curve with arrows shows the outflow solution passing through

the slow (trans-slow), Alfv́en (trans-Alfv́en) and fast points (trans-fast) represented on

the figure as S (i.e., rS), A (i.e., rA), and F (i.e., rF), respectively. This solution passes

through all the critical points and is a global solution (connecting outflows near the

compact object with asymptotically large distance). Since the entropy of all the critical

points are same (solid square in Fig. 4.2 a), the wind solution is smooth. Among

all possible global solutions, the one passing through S, A and F has higher entropy

and therefore is the correct physical solution. This is equivalent to the WD class of
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Figure 4.2: (a) Ec—Ṁc plot corresponding to Fig. 4.1. The branches named BC,
CD etc up to IJ are also marked on the curve. The square (red) corresponds to the
outflow solution passing through slow, Alfv́en and fast points. The triangle (black)
represent solutions which is not passing through all three critical points. (b) vr versus
r or actual outflow solutions. The solid red curve with arrow heads represent the
transonic wind solution passing through slow, Alfv́en and fast points, marked as S, A,
F, respectively. The dashed red curves are the transonic outflow solutions with wrong
boundary condition. long-dashed black curve is a trans-slow solution. Dashed-dotted
curve is the trans-slow, trans-Alfv́en solutions and long-dashed-dotted curve is a trans-
Alfv́enic flow. E = 1.04257 (dotted horizontal), L = 1.75 for all the curves (Singh &
Chattopadhyay, 2019a).

solutions. The dashed curve represents the solution which also passes through S, A

and F points but with boundary conditions which are opposite to that of the outflow

solution and is multi-valued in a limited range of r. The boundary condition of an

outflow is that it has to be sub-slow (i.e., vr ∼ small) near the central object and super-

fast (i.e, vr ∼ high) at asymptotically large distances, which is evidently not the case

for the dashed (red) curve. Other solutions which are not marked with arrows, also do

not satisfy the boundary conditions of an outflow. These solutions either pass through

A (long-dashed-dotted, black), or through A and S (dashed-dotted, black), or at times

only through S (long-dashed, black). It is interesting to inquire about solutions for

E > 1.04257 mark (above the dotted horizontal curve in Fig. 4.2 a). Such solutions may

have entropy higher than that corresponding to the solid square, but unfortunately,

those solutions do not pass simultaneously through rS, rA, & rF. Moreover, if there
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Figure 4.3: (a) MA vs r as a function of r. The solid curve with arrow heads is the
physical wind solution and the dotted are other unphysical branches. Location of the
slow magneto-sonic, Alfvén and fast magneto-sonic points are marked as S, A and F,
respectively. (b) Comparing vr (solid with arrows, red), uS (dashed, green), uA (long-
dashed blue) and uF (dashed-dot, violet) of the physical wind branch as a function
of r. The locations where vr crosses uS, uA and uF are marked as S, A and F. (c)
Thermal (solid, black), rotational (dashed, red), gravitational (dashed-dot, green) and
magnetic (long- dashed-dotted violet) terms of the Bernoulli parameter E are named
as TE, RE, GE and ME, respectively. (d) Comparison of forces FT (solid, black), FR

(dashed, red), FG (dashed-dot, green), FM (long-dashed violet) as function of r. Panels
(b— d) presents variables corresponding to the solution (solid) in panel a. The wind is
for E = 1.03075 and L = 1.0. Here ξ = 1 (Singh & Chattopadhyay, 2019a).

exist a global solution for such parameters, still we cannot consider them as proper

solutions because those are decelerating. The resulting terminal speed therefore, is

less than the solution represented by solid curve with arrows in Fig. 4.2 (b). In other

words, the outflow solution for any set of E—L, which passes simultaneously through

rS, rA and rF (one with arrows) is the correct and accelerating class of wind solutions

and was first pointed out by Weber & Davis (1967).

In Fig. 4.3 (a), we plot the Alfvén Mach number MA (equation 4.6) as a func-

tion of r, corresponding to the physical solution (trans-slow, trans-Alfv́en, trans-fast)

represented as solid curve, marked with arrows. Physical wind solution passes simul-

taneously through all the three critical points S, A and F. The dotted curves represent

other unphysical solutions. It may be noted that, ordinary Mach number distribution
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(i. e., vr/cs) is not presented in the figure. This is simply because in a magnetized

plasma, sound speed works in tandem with magnetic pressure and by itself is not vi-

tally important. However, Alfvén speed determines the flow structure, therefore, the

information whether a flow is super or sub Alfvénic is important. In Fig. 4.3 (b), we

compare vr (solid with arrows, red), uS (dashed, green), uA (long-dashed blue) and uF

(dashed-dot, violet) of the physical wind solution presented in the previous panel, as

a function of r. These solutions corresponds to E = 1.03075, L = 1.0 and ξ = 1. The

locations of rS, rA and rF (marked as S, A and F in the figure) corresponds to the in-

tersection of vr with uS, uA and uF. In Fig. 4.3 (c), we plot various components of E,

namely, the thermal or TE (≡ h − 1), the rotational or RE (≡ v2
φ/2), the gravitational or

GE (≡ Φ) and the magnetic or ME (≡ −{BφBrΩr}/{4πρvr}) terms of equation (4.4). The

inset zooms all the curves for r → large. Near the compact object, TE term dominates,

while at r >∼ 100rg the ME term dominates. Similarly, we plot various force terms FT

(thermal), FR (rotational), FG (gravitational) and FM (magnetic), along the streamline in

Fig. 4.3 (d). Near the central object, FT drives the flow against gravity. At large distance

all the forces become comparable to each other, therefore comparing the combination

of forces which competes with each other gives a better picture. The thermal force is

the primary agency which opposes gravity, while magnetic force reduces vφ. So we

paired the competing forces like FT and FG and compared with the other combination

FR and FM. At large distance the magnetic and the centrifugal forces together exceeds

the thermal and the gravitational forces and drives the wind outward (see Fig. B.1 in

Appendix B).

We study the effect of L on outflow solutions. In Fig. 4.4 (a) we plot Ec as a function

of rc, each curve is for L = 0.1 (solid, black), 1.0 (dashed, red) and 2.0 (long-dashed,

green). With the increase of L, the flow becomes more energetic at a given critical

point. In Fig. 4.4 (b) we plot Ec versus Ṁc. For each value of L, all the branches for

O-type and X-type critical points are present, however for low L (solid, black) the kite-

tail part is very small, which implies that multiple critical points are possible only for a

rotating flow. Although L has a significant effect on the parameter- space, but in order

to get a more quantitative idea, one need to compare outflow solutions for different L

but same E.

We compare the flow solutions, like vr (Fig. 4.5 a), vφ (Fig. 4.5 b), Θ (Fig. 4.5 c)

and Γ (Fig. 4.5 d) as a function of r, for various values of L = 0.35 (solid, black), L = 1.0

(dashed, red), L = 2.0 (long-dashed, green). All the plots have the same Bernoulli

parameter E = 1.03075 and ξ = 1.0. In Fig. 4.5 (a), the solid circle, arrow head, and
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Figure 4.4: (a) We have plotted the total energy Ec at critical point rc for total
angular momentum L = 0.1 (solid, black), 1.0 (dashed, red) and 2.0 (long-dashed,
green). (b) Ec—Ṁc for various values of L = 0.1 (solid, black), 1.0 (dashed, red) and
2.0 (long-dashed, green). Here ξ = 1 (Singh & Chattopadhyay, 2019a).
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Figure 4.5: Flow solutions like, (a) vr, (b) vφ, (c) Θ and (d) Γ as a function of r.
Each curve is for L = 0.35 (solid, black), L = 1.0 (dashed, red), L = 2.0 (long-dashed,
green) Here E = 1.03075, ξ = 1 (Singh & Chattopadhyay, 2019a).
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Figure 4.6: (a) Flow streamlines and (b) magnetic field lines. Each of the curves
are for total angular momentum L = 1.0 (solid, red) and L = 2.0 (dashed, green) in
xy-plane. In both the cases E = 1.03075 (Singh & Chattopadhyay, 2019a).

square represents the positions of the slow, Alfvén and fast points, respectively. For

L = 0.35, the Alfv én and fast points are almost merged, the inset zooms the region to

resolve those two points. Outflows with higher L and same E have higher values of

vφ. Interestingly, outflows with higher values of L, are slower (low vr in long-dashed

curve). If one compares various terms in the equation (4.4), by keeping E constant but

increasing L, then the budget in centrifugal and magnetic terms are larger compared

to that in radial kinetic and thermal terms. Therefore, vφ increases with L, but vr and

Θ decreases.

We plot the outflow streamlines in Fig. 4.6 (a) and the magnetic field lines Fig. 4.6

(b) of a plasma whose E = 1.03075, where total angular momenta are L = 1.0 (solid, red)

and L = 2.0 (dashed, green) in xy-plane. The wind streamline (SL) and magnetic field

lines (FL) are obtained by integrating the following equations,

dφSL =
vφ
vr

dr

r
; & dφFL =

Bφ
Br

dr

r
(4.15)

This plot reconfirms the governing equations which showed that the magnetic field

is clockwise but the wind is counter clockwise. It also shows a very important effect

that magnetic field has on ionized plasma. It modifies the plasma streamline by redis-

tributing the plasma angular momentum (rvφ), such that, for L = 1.0 flow (solid red;
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Figure 4.7: These are the wind solutions for different Bernoulli parameters E =
1.01575 (solid, black), 1.05575 (dashed, red) and 1.09975 (long-dashed, green). We
have plotted the radial velocity vr (a), vφ (b), Θ (c) and Γ (d) versus radius r. All the
plots are for L = 1.0 and ξ = 1.0 (Singh & Chattopadhyay, 2019a).

Fig. 4.6 a) which was launched with a counter-clockwise rotation, is flung out even

before completing a loop. So this figure presents the structure of the outflow for two

angular momenta as depicted in Fig. 4.5. It is clear that the outflow and the magnetic

field are not parallel to each other.

To study the effect of Bernoulli parameter, we compare vr (Fig. 4.7 a), vφ (Fig. 4.7

b), Θ (Fig. 4.7 c) and Γ (Fig. 4.7 d), for various values of E = 1.01575 (solid, black),

1.05575 (dashed, red) and 1.09975 (long-dashed, green) for a given value of L = 1.0. The

solid circle, arrow head, and square represents the positions of the slow, Alfvén and

fast points, respectively. The flow with higher E is faster (high vr), less rotating (low vφ)

and hotter (high Θ) compared to flows with lower values of E. Γ is not constant in any

of the cases discussed so far and it follows the Θ distribution.

In Fig. 4.8, we present the effect of strong gravity. We chose electron-proton or

ξ = 1.0 plasma, where the flow has the same Bernoulli parameter E (= 1.301), rA (=

3.3859) and total angular momentum L (= 1.75). However, we compare magnetized-wind

solutions expanding in a region described by Newtonian gravitational potential (solid,

black) with another one in a region described by PWP (dashed, red). We chose a higher

value of E, in order to maximize the effect. Even for the same specific energy and



MHD with Relativistic EoS 66

100 101 102 103 104
r

0.0

0.2

0.4

0.6

vr

(a)

NP
PWP

100 101 102 103 104
r

0.0

0.1

0.2

vϕ

(b)

100 101 102 103 104
r

10−1

101

103

Θ

(c)

100 101 102 103 104
r

1.4

1.5

1.6

Γ

(d)

Figure 4.8: Wind solution in Newtonian potential ΦNP (solid, black) and in Paczyński
& Wiita potential ΦPWP (dashed, red) for E = 1.301, L = 1.75 and ξ = 1. The flow
variables are (a) vr, (b) vφ, (c) Θ and (d) Γ versus radius r. The slow-point, Alfvén point
and fast-point are marked as solid circle, triangle and square (Singh & Chattopadhyay,
2019a).

angular momentum, the wind in a region described by ΦPWP is faster and hotter than

the one in a region described by a Newtonian gravity. The stronger gravity of a ΦPWP

compresses the plasma around the compact object and produces a higher temperature

flow. The inner boundary condition of the outflow in ΦNP, shows that vr (although sub-

slow) is quite high, while vφ and Θ is lower than that around ΦPWP. The acceleration

achieved for flows around ΦNP is quite moderate, while that around ΦPWP is significant.

If we use lower E then perhaps the vr at the inner boundary for ΦNP will have proper

value but then the terminal speed would be very low. One may conclude that, if we

use ΦNP to describe the gravity around a compact object, then, only slow outflows can

be obtained.

In Fig. 4.9 (a, b), we plot the effect of composition of the flow on its critical point

properties. We plot the Bernoulli parameter as a function of critical radius i.e., Ec

versus rc, for fixed value of L = 1.0 and rA = 11.85, but different values of composition

or ξ = 0.0 (solid, black), ξ = 0.5 (dashed, red), ξ = 1.0 (long-dashed, green). Similar to

previous Ec and Ṁc plot, the proper wind solution corresponds to the Ec versus Ṁc
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Figure 4.9: In panel we plot, (a) Ec versus rc and (b) Ec versus Ṁc. The curves
represent ξ = 0.0 (solid, black), ξ = 0.5 (dashed, red), ξ = 1.0 (long-dashed, green).
All plots are for L = 1.0 (Singh & Chattopadhyay, 2019a).

at the intersection of the X-type slow branch and X-type fast branch (marked as solid

circle, triangle and a square for three values of ξ).

In Fig. 4.10 (a-d), we compare vr, vφ, Θ and Γ for flows with the same E (= 1.03075)

and L (= 1.0) but for different composition ξ = 0.05 (solid, black), 0.5 (dashed, red)

and 1.0 (long-dashed, green). All the flow variables like vr, vφ and Θ depend on ξ. The

ξ = 1.0 or electron-proton flow has somewhat higher vr close to the base. The lepton

dominated wind (ξ = 0.05) has higher vr at some intermediate range of r, but finally

for a flow with a composition parameter ξ = 0.5, the terminal vr or vmax
r = vr|r→∞ is

higher than the flow with other two combinations, albeit by a small amount. This is

not expected in hydrodynamics. It may be noted that, in hydrodynamics for r → large,

h→ 1, centrifugal term → 0, Φ(r)→ 0, vmax
r →

√
2(E − 1). In other words, the terminal

speeds of winds in hydrodynamics do not depend on composition, but for MHD winds,

even as r → large, h >∼ 1 because of the presence of the magnetic term and hence vmax
r

depends on ξ. The azimuthal velocity vφ also depends on ξ, where an electron-proton

flow has the least vφ distribution when compared with flows of higher proportion of

leptons. However, vφ → 0 at r → large, therefore the asymptotic value of vφ does not

depend on ξ. It may be noted that, the effect of ξ cannot be studied by attributing
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Figure 4.10: (a) vr, (b) vφ, (c) Θ and (d) Γ as a function of r, where each curve
represent ξ = 0.05 (solid, black), ξ = 0.5 (dashed, red) and ξ = 1.0 (long-dashed,
green). All the curves have the same E = 1.03075 and L = 1.0 (Singh & Chattopadhyay,
2019a).

some scale factor, as one can clearly see that, the vφ curves intersect for flows with

ξ = 0.5 and 0.05. Similar to all the studies in the hydrodynamic regime in the present

case too, the temperature distribution Θ(r) is highest for ξ = 1.0. Although Θ is high

for ξ = 1.0 compared to other flows with ξ < 1, the Γ for electron-proton flow is not

the lowest. In fact, at lower values of r, Γξ=0.05 < Γξ=0.5 < Γξ=1. This is because, Γ

compares the thermal energy of the plasma compared to its inertia, hence high value

of Θ cannot compensate for higher inertia of an electron-proton flow. In comparison, a

lepton dominate flow (ξ = 0.05) achieves Γ→ 4/3, in spite of starting with a temperature

at least an order of magnitude less that of an electron-proton flow.

In Fig. 4.11, we have plotted vmax
r as a function of ξ, for various values of energies

(E = 1.15475, 1.04575, 1.03075, and 1.01075) and a given value of L. It is interesting to

note that terminal speed distribution for higher to lower energies of the magnetized

outflow, depends on ξ. For higher energies, it decreases with ξ, but for lower E, vmax
r

maximizes at some value of ξ. The maxima depends on E. This is a significantly

different result compared to hydrodynamics. This effect arises due to the competition

between pressure gradient and magnetic forces in the equations of motion.
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Figure 4.11: Terminal speed vmax
r is plotted as a function of ξ from top panel and

downwards for E = 1.15475, 1.04575, 1.03075, and 1.01075, respectively. L = 1.0 for
all the curves (Singh & Chattopadhyay, 2019a).

4.5 Discussion and Concluding Remarks

Our main focus is on studying the effect of variable Γ EoS and the composition on

magnetized wind solutions. This model is the bedrock over which magnetized jet mod-

els were developed later. In this context, it may be noted that there are of course many

models of generation of outflows around compact objects, tailored to address different

scenarios. For example, if the underlying accretion disc is luminous then radiation

can drive outflows via scattering processes (Icke, 1980; Tajima & Fukue, 1996, 1998;

Moller & Sadowski, 2015; Yang et al., 2018; Vyas & Chattopadhyay, 2019) or for cooler

gases via the line driven processes (Nomura et al., 2016; Nomura & Ohsuga, 2017).

In case the accretion flow is of low luminosity, then magnetic, gas pressure and cen-

trifugal term may drive outflows (Gu, 2015; Yuan et al., 2015; Bu et al., 2016a,b; Bu &

Mosallanezhad, 2018). In the present study, we are also working in the regime where

radiation is not important. However, our main focus is to study a typical transmag-

netosonic outflow solution and what are the parameters these solutions depend on.

In particular, the effect of a variable Γ EoS and different compositions of the plasma

on the outflow solution has probably not been studied before. In this study, we have

revisited magnetized, wind model using Paczyński & Wiita potential, variable Γ EoS
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and for various values of total angular momentum (L), Bernoulli parameter (E) and

composition (ξ) of the flow. E and L are constants of motion. However, as is the case in

hydrodynamics, in MHD too, there can be a plethora of solutions corresponding to the

same set of constants of motion. As has been shown by Bondi (1952), of all the possible

solutions related to a given set of constants of motion, the physical global solution is

the one which has the highest entropy and also happens to be the transonic one. Sim-

ilarly in MHD (Fig. 4.2), it was shown that the solution passing through slow, Alfv́en

and fast points is the correct solution. We have found that for a given set of values of E

and ξ, higher angular momentum outflows are slower (lesser vr) compared to flows with

lower L. This is understandable, since matter which is rotating faster, will not able to

possess higher vr. In particular, for flows with lower L, magnetic field may deflect out-

flow from counter clockwise to a quasi- radial flow relatively close to the central object

(Fig. 4.6 a). In other words, the effect of magnetic field cannot be quantified by how

much the flow is accelerated radially, but magnetic field has a very important role in

regulating flow angular momentum. We also show that faster outflow is possible, for

flows with higher E. Interestingly, the Θ differs slightly if E or L is changed, but the

change in vr and vφ is more significant. However, vr, vφ and Θ distributions are signifi-

cantly different for different values of ξ. This is because, if we change the composition

of the flow, then we are not only changing its thermal energy content (which pushes

the matter outward), but also the inertia of flow. Therefore, the terminal speed of the

outflows at a given value of E and L maximizes at a given value of ξ. Although, the ξ

at which the peak of vmax
r will occur, also depends on E. The peak steadily shifts to

higher ξ as E decreases. The dependence of various flow variables on ξ for MHD flows

probably has not been reported before. In addition, the spectra emitted by such winds

should be quite different for different values of ξ, since the different velocity distribu-

tions would result in different density distributions. Moreover, different temperature

distributions would strongly determine the processes that would dominate the emis-

sion. We also studied the wind solutions in different gravitational potentials to show

how the compactness of the central object affects the outflow solutions.



Chapter 5

Study of Relativistic Magnetized

Outflows with Relativistic

Equation of State

5.1 Overview

In this chapter, we continue our study of outflows of Chapter 4 but now about the axis

of rotation and not along the equatorial plane. Collimated outflows or jets start very

close from the central object where the temperature is very high and these outflows

have relativistic speeds, so we study these outflows in the special relativistic regime.

Since the outflows scale a large temperature range while flowing out, we use relativistic

equation of state (CR EoS) to describe the thermal state of the outflow. Moreover, mag-

netic field is expected to play a vital role, therefore we study these outflows in special

relativistic magnetohydrodynamic (SMHD) regime. In this study, we follow the method-

ology of Polko et al. (2010), but consider a CR EoS to obtain the radially self-similar

solutions. There are few parameters (i.e., current distribution, entropy) and initial con-

ditions (e.g., angle of magnetic field lines with the disc plane at the Alfvèn point, the

cylindrical radius of the Alfvèn point, etc) which give rise to various plausible solutions.

We analyse the dependence of such solutions on aforementioned parameters and ini-

tial conditions. Further, we also calculate the streamlines, and study behaviour of

forces which affect the outflow acceleration and morphology. As mentioned in Chap-

ter 1 that Polko et al. (2010) used Vlahakis et al. (2003a) model with fixed adiabatic

71
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index (Γ = 5/3) equation of state and showed that the flow can become trans-Alfvénic

(sub Alfvénic to super Alfvénic) and trans-fast (sub fast to super fast). In contrast,

Vlahakis et al. (2003a) could obtain only trans-Alfvénic flow with Γ = 4/3. Therefore,

the thermodynamics of the flow may play an important role in determining the nature

of the solution. Thus, we have also studied the effect of EoSs (i.e., fixed adiabatic in-

dex and CR EoSs) on outflow solutions. We have shown that the flow variables (i.e.,

velocity, temperature, etc.) highly depend on the plasma composition. These results

are published in Singh & Chattopadhyay (2019b).

5.2 Special relativistic magnetohydrodynamic equations and

assumptions

5.2.1 Governing equations

We have used the special relativistic magnetohydrodynamic (SMHD) equations (see

section 2.3) for the study of relativistic outflows. As we have explained in section 2.4

that we need two closure equations, one for the electro-magnetic field which is flux

freezing condition of MHD and another for the matter which is EoS, these two equations

help to reduce the number of unknowns.

5.2.1.1 Relativistic EoS having variable Γ

In this analysis of outflows we use relativistic EoS (see section 2.4.3). Integrating 1st

law of thermodynamics (uµ∇νTµν = 0) with the help of continuity equation, we can

obtain the adiabatic equation of state,

ρ = Kg(Θ, ξ), (5.1)

where, g(Θ, ξ) = exp(k3)Θ3/2(3Θ + 2)k1(3Θ + 2/η)k2 , k1 = 3(2 − ξ)/4, k2 = 3ξ/4 and k3 =

(f −K)/(2Θ) and K is the measure of entropy. Therefore, pressure p is given by,

p =
2Kg(Θ, ξ)Θ

K
c2 (5.2)

5.2.2 Conventional form of SMHD equations

By using the EoS and ideal MHD assumption, we can write equations (2.5) and (2.6)

in the conventional form. The mass conservation equation is ∇µ(ρuµ) = 0, or the
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continuity equation,
∂ (γρ)

∂t
+ ∇. (vγρ) = 0. (5.3)

The momentum conservation equation is, ∇νT kν = 0, where the k = 1, 2, 3 compo-

nents,

γρ

(
∂

∂t
+ v.∇

)
(hγv) = −∇p+

J0E + J× B
c

. (5.4)

The first law of thermodynamics is obtained by going to the co-moving frame of the

flow, uµTµν,ν = 0, (
∂

∂t
+ v.∇

)
e+ p

(
∂

∂t
+ v.∇

)(
1

ρ

)
= 0, (5.5)

where e ≡ ē/ρ.

We study the axisymmetric steady flow, therefore, ∂/∂t = 0 and ∂/∂φ = 0. For axisym-

metric flow, the solenoidal condition can be written as,

∇.B = ∇.Bp = 0. (5.6)

The total magnetic field B is given as,

B = Bp + Bφ, where, Bp =
∇A× φ̂

$
. (5.7)

Here, Bp and Bφ are the poloidal and azimuthal components of the magnetic field,

respectively. The A($, z) is a poloidal magnetic flux function and this can be defined

as A = 1
2π

∫ ∫
Bp.dS and Bp.∇A = 0 which means that poloidal magnetic field lines are

orthogonal to the gradient of magnetic flux function. Here, $ represents the cylindrical

radius, v ≡ vpep + vφeφ, vp is poloidal velocity and vφ is azimuthal velocity. With the

help of ideal MHD flow condition (2.7) and Eφ = 0 (from Faraday equation 2.6) we can

show that vp ‖ Bp, so

E =
$Ω

c
B× eφ, v =

ΨA

4πγρ
B +$Ωeφ and

ΨA

4πγρ
=

vp

Bp
. (5.8)

Here, ΨA is the mass to magnetic flux ratio and Ω is the field angular velocity. We can

obtain the constants of motion by projecting equations (5.3) - (5.5) along and perpen-

dicular to the streamline and then integrating them (for more details see Vlahakis et

al., 2003a), we have five constants of motion Ω(A, s), ΨA(A, s), L(A, s), µ(A, s), K(A, s),

where s ≡ ct − `, t is time and ` is length of a poloidal field line. These constants of

motion are as follows:
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(i) The mass to magnetic flux ratio is obtained from continuity equation (5.3) and

equation (5.6),

ΨA =
4πγρvp

Bp
. (5.9)

(ii) The angular velocity of field lines at the disc is obtained from the Faraday equation

(2.3),

Ω =
vφ
$
− ΨABφ

4πγρ$
. (5.10)

(iii) Azimuthal component of momentum balance equation (5.4) gives the total specific

angular momentum i.e., angular momentum associated with the matter (LM) and

magnetic field (LB), has the form,

L ≡ LM + LB = hγ$vφ −
$Bφ
ΨA

. (5.11)

(iv) By taking dot product with velocity (v) with momentum balance equation (5.4)

gives the total energy to mass flux ratio i.e., energy associated with the matter

(µM) and magnetic field (µS), has the form,

µ ≡ µM + µS = hγ − $ΩBφ
ΨAc2

. (5.12)

(v) The measure of entropy is given by equation (5.1),

K =
ρ

g(Θ, ξ)
. (5.13)

The poloidal Alfvénic Mach number (see, Michel, 1969) is defined as,

M ≡ γvp(
Bp/
√

4πρh
) ,

and using equations (2.15), (5.2) and (5.8), we can also write M as,

M2 = q(A)
h(h− f(Θ, ξ)/K)K

2Θg(Θ, ξ)
= q(A)

h

g(Θ, ξ)
, (5.14)

where q(A) ≡ Ψ2
A/4πK. To solve SMHD equations we assume that jet solutions are radi-

ally self-similar (for more details see section 3 in Vlahakis et al., 2003a). The derivative

of dimensionless temperature Θ and enthalpy h w.r.t polar angle θ is given by,

dΘ

dθ
= − g(Θ, ξ)ΘK

qN (hK − 2ΓΘ)

dM2

dθ
and

dh2

dθ
= −

(
2h2

M2

)
2ΓΘ

hK − 2ΓΘ

dM2

dθ
. (5.15)
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If we take the derivative of total energy w.r.t polar angle (θ) with the help of equations

(5.14) and (5.15) we obtain (for more details see Appendix C and Polko et al., 2010),

A1(θ, ψ,G2,M2)
dM2

dθ
+B1(θ, ψ,G2,M2)

dψ

dθ
= C1(θ, ψ,G2,M2), (5.16)

where x ≡ $Ω/c is cylindrical radius in terms of light-cylinder, G ≡ x/xA (here, xA ≡ x

at Alfvén point) and ψ is the angle of poloidal field line with the disc. The transfield

equation which controls the collimation of the flow, can be obtained from the momen-

tum equation by taking dot product with −∇A i.e., perpendicular to the poloidal field

line,

A2(θ, ψ,G2,M2)
dM2

dθ
+B2(θ, ψ,G2,M2)

dψ

dθ
= C2(θ, ψ,G2,M2). (5.17)

Therefore, we can get the wind equation or outflow equation (dM2/dθ) for radially self-

similar flows by solving (5.16) and (5.17) equations,

dM2

dθ
=
C1B2 − C2B1

A1B2 −A2B1
. (5.18)

Where, the coefficients A1, B1, C1, A2, B2 and C2 are given in the Appendix C. The wind

equation (5.18) has two critical points (Alfvén and fast critical point) i.e., where it be-

comes 0/0 form and this can be solved with the L’Hospital’s rule, so the Alfvén point

condition is given in the Appendix C.

5.3 Methodology

We study the flow in the special relativistic domain, in which the slow magnetosonic

point does not form, i.e., we find the solution from the sub-Alfvénic to super-fast regime.

To obtain the solution of magnetically driven relativistic outflow about the axis of sym-

metry, we integrate equations (5.15)1 and (5.18). In addition, we also solve equation

(C.2) and total energy to mass flux ratio equation (C.1) to obtain ψ if the value of µ

is known. First, we supply the values of Alfvén point xA, F (current distribution), q,

θA = θ|xA
, ψA = ψ|xA

. We obtain M2
A (= 1 − x2

A) and therefore ΘA using equations

(2.15 & 5.14). Then we obtain σA from equations (C.10 & C.11) for a given value of

σM. Now we obtain the value of µ and pA = dM2/dθ|xA
from equations (C.10) and (C.9),

respectively. With these values, we integrate equations (5.18, C.2, 5.14 or 5.15) start-

ing from xA inward and outward. The solution may not pass through the fast point,
1Equation (5.14) instead of equation (5.15) may also be used, since they are equivalent.
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so we iterate on σM until the solution passes through the fast point as well. We use

Runge- Kutta fourth order method to integrate but also use Newton-Raphson’s method

to accurately obtain the flow quantities like θf , ψf , G
2
f ,M

2
f , where the suffix ‘f’ denotes

quantities measured at the fast-point. Since, we integrate the equations starting from

the Alfvén point, therefore x2
A, θA, ψA essentially are the boundary conditions or bound-

ary parameters. In this study, there is no need to specify adiabatic index Γ since it is

self-consistently obtained from EoS. In addition to this, we have one more free param-

eter ξ which controls the composition of the flow.

5.4 Analysis and Results

In this analysis, the velocity is measured in the units of speed of light c, distance is in

units of light cylinder rc ≡ c
Ω and temperature is in degree Kelvin. In our model, there

are two main free input parameters F and q, three boundary parameters ψA, θA, x
2
A and

a composition parameter ξ. We study the effect of these parameters on the outflow

solutions and on the collimation of outflowing matter with CR EoS.

5.4.1 Solutions for different current distributions (F )

In Fig. 5.1, we plot different solutions for different current distribution parameter

F = 0.750 (solid, black), 0.760 (dashed, red), 0.770 (long-dashed, green), 0.780 (dashed-

dotted, blue), 0.795 (long-dashed-dotted, magenta) and other four parameters are fixed

i.e., x2
A = 0.75, θA = 50, ψA = 55, q = 500 & ξ = 1.0. In Fig. 5.1 (a), the projected

streamline in the x−z plane is plotted. The distribution of corresponding flow variables

like logM2 (Fig. 5.1 b), poloidal velocity vp (Fig. 5.1 c), azimuthal velocity vφ (Fig. 5.1 d),

matter (µM) and magnetic field (µS) part of the Bernoulli parameter (Fig. 5.1 e), angular

momentum associated with the matter (LM) and magnetic field (LB) which are part of

the total angular momentum (Fig. 5.1 f), Lorentz factor γ (Fig. 5.1 g), log of temperature

logT (Fig. 5.1 h) and adiabatic index Γ (Fig. 5.1 i) with logz are plotted. In Fig. 5.1

(a), solid-circles represent Alfvén point location and solid-triangles represent the fast

point location, where z is the vertical height and x is the cylindrical radius. In Fig. 5.1

(a), we note that if we increase F , the solution collimates at higher height (z). Higher

value of F implies weaker magnetic field near the base, so it travels larger z before the

outflow starts to collimate. In panel Fig. 5.1 (c), we see that vp has a dip, which is due

to the interaction of magnetic field with matter. Near the base, µS gains at the cost of
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Figure 5.1: Outflow solutions for different values of F = 0.750(solid, black),
0.760(dashed, red), 0.770(long-dashed, green), 0.780(dashed-dotted, blue),
0.795(long-dashed-dotted, magenta) and other four parameters are fixed i.e.,
x2

A = 0.75, θA = 50, ψA = 55, q = 500, ξ = 1. (a) Projected streamline, (b) logM2, (c)
vp, (d) vφ, (e) µS = −$ΩBφ/ΨAc

2 and µM = γh, (f) LB and LM, (g) γ, (h) logT and
(i) Γ, are plotted with logz. Here, z is vertical height and x is cylindrical radius in
units of light cylinder. Solid circles and triangles represent Alfvén point and fast-point
locations (Singh & Chattopadhyay, 2019b).

µM (Fig. 5.1 e), therefore there is simultaneous decrease in thermal and kinetic terms.

When the magnetic energy (µS) becomes sufficiently strong, it starts to accelerate the

outflow, although the outflow temperature continues to decrease. Hence there is a

dip in vp. Another very interesting result is that vφ changes sign from negative to

positive (Fig. 5.1 d). It means, initially the flow is rotating clockwise and somewhere in

between the Alfvén and the fast points, the flow flips to a counter-clockwise direction.

In MHD, we have two types of angular momentum, one that is associated with the

matter LM ≡ hγ$vφ and the other associated with the magnetic field LB ≡ −$Bφ/ΨA.

Therefore, only total angular momentum is conserved throughout the flow but not the

individual angular momenta (Fig. 5.1 f). Thus, azimuthal velocity vφ changes sign
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because of transfer of angular momentum from magnetic field to matter. In Fig. 5.1

(g), the variation of Lorentz factor γ is shown. We can see that higher value of F

produces outflows with higher Lorentz factor γ ∼ 45 (F = 0.795, long-dashed-dotted).

In Fig. 5.1 (h), we plot temperature variation of the outflow with height, for different

values of F parameter. We can see that outflow starts with high temperature when it is

sub-Alfvénic and temperature drops to very small value when the flow becomes super-

fast. Last panel Fig. 5.1 (i) shows that the adiabatic index Γ does not remain constant

throughout the solution, it varies from Γ ∼ 1.44 to 5/3. It is well known that gases

with non-relativistic temperatures have Γ = 5/3 or the polytrpoic index N = 3/2. For

gases with ultra-relativistic temperatures, N → 3 or Γ → 4/3. It may be noted that, N

is the temperature gradient of the specific energy of the gas i.e., ∼ df/dΘ (see, equation

2.15). For non- relativistic thermal speed (for T <∼ 107K), the energy density of the

gas (ē) is dominated by rest-mass energy, so N (therefore Γ) remains constant (≡ 5/3).

But for higher temperatures, the thermal speed becomes relativistic, therefore kinetic

contribution becomes comparable to rest mass in ē, as a result N increases with rising

T . But the upper limit of thermal speed is c, therefore for ultra-relativistic temperature,

the kinetic contribution of the gas particles into ē of the gas becomes maximum and

therefore N again becomes temperature independent, where asymptotically N → 3 (or,

Γ → 4/3). For example, if the temperature of a gas is in between these two extremes

(107K < T < 1013K), then the thermal state is described by 3/2 <∼ N <∼ 3 (see Fig. 1 a in

Chattopadhyay & Ryu, 2009). In Fig. 5.1 (h), temperature drops from ∼ 1010 to ∼ 104

the thermal energy decreases as a result, Γ changes from ∼ 1.44 (near-relativistic) to

∼ 5/3 (non-relativistic).

In Fig. 5.2, we plot the streamlines of outflow solution for x2
A = 0.75, θA = 50, ψA =

55, F = 0.75, q = 500, ξ = 1. Figs. 5.2 (a) & (b) are the side and top view of streamlines

of the outflow, respectively. Here xy plane represents the equatorial plane and z is the

vertical height from the equatorial plane in terms of light cylinder. Two dashed circles,

one near to the base (z ∼ 0.73 i.e., the circle in the inset of both the panels) represents

the Aflvén point location. The other at z ∼ 3500 represents the fast point location. As

we discussed before, the transfer of angular momentum from the field to the matter,

changes the direction of rotation of the flow. We can also see in Fig. 5.2, that the

transfer of angular momentum from field to the matter has twisted the streamlines of

the outflow.
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Figure 5.2: Solid curves represent the streamlines of outflow solution for x2
A =

0.75, θA = 50, ψA = 55, F = 0.75, q = 500, ξ = 1. (a) Side view and (b) top view.
There are two dashed circles, one near to the center at z ∼ 0.73 represents the Aflvén
point location and second at z ∼ 3500 represents the fast point location. Here, z is
vertical height and x, y are in terms of light cylinder. Inset: Region close to the base is
zoomed to show the location of the Alfvén point (dashed circle) (Singh & Chattopad-
hyay, 2019b).

5.4.2 Solutions for different Alfvén point angle (ψA) with the disc

In Fig. 5.3 we plot outflow solutions for different values of ψA = 50 (solid, black),

52 (dashed, red), 54 (long-dashed, green), 55 (dashed-dotted, blue) and 56 (long-dashed-

dotted, magenta). All the curves are for fixed values of x2
A = 0.75, θA = 50, F = 0.75, q =

500 and ξ = 1. In Fig. 5.3 (a), the solution which has lower values of ψA are less

collimated. Since, centrifugal force also has component in the poloidal direction i.e.,

cos(ψ) component of centrifugal force (see equation C.5 in Appendix C), therefore flow

which has small Alfvén point angle with the equatorial plane has larger centrifugal

force which spreads the outflow over larger x. In general, the solutions with lower ψA,

are of lower µ and σM and therefore are slower (i.e., less vp). Although µ and L are

constants of motion, but respective magnetic and matter components of each are not

constants. The azimuthal component of velocity vφ also flips sign. Panels Fig. 5.3 (h-i)

show the variation of temperature and adiabatic index (varies from 1.4 to 5/3) of the

flow.

5.4.3 Solutions for different Alfvén point polar angle (θA)

In Fig. 5.4, we plot outflow solutions for different values of θA = 44 (solid, black),

46 (dashed, red), 48 (long-dashed, green), 50 (dashed-dotted, blue), 51 (long-dashed-

dotted, magenta). Five parameters are fixed x2
A = 0.75, ψA = 55, F = 0.75, q = 500 and

ξ = 1 for all the curves. Solutions with smaller θA start with a smaller base (small
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Figure 5.3: Outflow solutions are for different values of ψA = 50 (solid, black),
52 (dashed, red), 54 (long-dashed, green), 55 (dashed-dotted, blue),
56 (long-dashed-dotted, magenta). All the curves plotted are for x2

A = 0.75, θA =
50, F = 0.75, q = 500, & ξ = 1. Panel (a) streamline on the xz-plane, (b) logM2,
(c) vp, (d) vφ, (e) µS and µM, (f) LB and LM, (g) γ, (h) logT and (i) Γ versus logz.
Here, solid circles and triangles represent Alfvén and fast point locations (Singh &
Chattopadhyay, 2019b).

x), but expands to a larger x. While the ones starting with larger θA shows exactly

the opposite property. This is because the solution with smaller θA have larger value

of Bφ near the base, but at higher z, Bφ decreases faster than the one starting with

higher values of θA. In general, vp of outflow solution is higher for higher value of

θA (= 51, long-dashed-dotted, magenta). The µS and µM feeds at each other’s cost,

although the total specific energy µ remains constant along the flow. This is similar to

the constancy of the total angular momentum of the flow, but components associated

with the field and the matter are not constant. As in the previous cases, here too the

adiabatic index is not constant.
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Figure 5.4: Outflow solutions for different values of θA = 44 (solid, black),
46 (dashed, red), 48 (long-dashed, green), 50 (dashed-dotted, blue),
51 (long- dashed-dotted, magenta) and four parameters are fixed i.e.,
x2

A = 0.75, ψA = 55, F = 0.75, q = 500, ξ = 1 for all the curves. Panel (a)
streamline on the xz-plane, (b) logM2, (c) vp, (d) vφ, (e) µS and µM, (f) LB and LM,
(g) γ, (h) logT and (i) Γ versus logz. Here, solid circles and triangles represent Alfvén
and fast point locations (Singh & Chattopadhyay, 2019b).

5.4.4 Solutions for different Alfvén point cylindrical radius (xA)

In Fig. 5.5, we plot outflow solutions for different values of x2
A = 0.25 (solid, black),

0.35 (dashed, red), 0.55 (long-dashed, green), 0.70 (dashed-dotted, blue), 0.90 (long-dashed-

dotted, magenta). And other parameters which are kept fixed for all the curves are

θA = 50, ψA = 55, F = 0.75, q = 500 and ξ = 1. The poloidal (Bp) as well as toroidal

magnetic (Bφ) fields are higher for flows of higher xA. However at larger z, both the

components of the magnetic field fall faster, compared to that in the flows of lower xA

(see Fig. 5.5 c). Moreover, the component of centrifugal and magnetic forces along the

streamline (FC‖ & FB‖) are larger for higher values of xA. On the other hand, collima-

tion is achieved due to the competition between the components of magnetic (FB⊥) and
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Figure 5.5: Outflow solutions are for different values of x2
A = 0.25 (solid, black),

0.35 (dashed, red), 0.55 (long-dashed, green), 0.70 (dashed-dotted, blue),
0.90 (long-dashed-dotted, magenta). All the curves are plotted for fixed values
of θA = 50, ψA = 55, F = 0.75, q = 500, & ξ = 1. Panel (a) streamline on the
xz-plane, (b) logM2, (c) Bp and Bφ, (d) FC‖ and FC⊥, (e) FB‖ and FB⊥, (f) Γ versus
logz. Here, solid circles and triangles in panel (a), represent Alfvén and fast point
locations. The inset in panel (e) zooms onto various curves corresponding to different
values of xA. Magnetic field and forces are in arbitrary units (Singh & Chattopadhyay,
2019b).

centrifugal (FC⊥) forces orthogonal to the streamline (Fig. 5.5 a, d, e). As a result,

solutions corresponding to lower values of xA are more collimated (Fig. 5.5 a), because

the resultant of magnetic and centrifugal forces are directed towards the axis, closer to

the base than those with larger values of xA. This is expected due to the assumption

of radial self-symmetry. The Γ distribution along the streamline for different values of

xA, varies significantly from each other (Fig. 5.5 f). It may be noted that, in almost all

the cases, the outflow crosses the light cylinder with impunity.
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Figure 5.6: Outflow solutions with variable adiabatic index CR EoS (solid, black)
with ξ = 1, fixed adiabatic index EoS with Γ = 5/3 (dashed, red), and Γ =
4/3 (long-dashed, green). All curves are plotted for µ = 2.82420, x2

A = 0.25, θA =
52, ψA = 55, and F = 0.8. Panel (a) streamline on the xz-plane, (b) logM2, (c) vp,
(d) vφ, (e) logT , (f) Γ versus logz (Singh & Chattopadhyay, 2019b).

5.4.5 Comparison of solutions for fixed and variable adiabatic index

EoS (CR EoS)

In this section, we compared solutions of fixed adiabatic index EoS (with Γ = 5/3

and 4/3) and CR EoS. In Fig. 5.6, we plot outflow solutions for variable adiabatic

index EoS or CR EoS (solid, black) with ξ = 1 and fixed adiabatic index EoS with

Γ = 5/3 (dashed, red) and Γ = 4/3 (long-dashed, green). All curves are plotted for

µ = 2.82420, x2
A = 0.25, θA = 52, ψA = 55, and F = 0.8. Panel (a) shows the streamline

on the xz-plane, (b) logM2, (c) vp, (d) vφ, (e) logT , (f) Γ versus logz. In Fig. 5.6 (a), the

streamlines of all the outflow solutions for different EoS are same. Interestingly, all the

solutions also pass through both Alfvén and fast critical points. These solutions also

have almost similar Alfvén Mach number distribution (Fig. 5.6 b). However, in Fig. 5.6
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(c), we can see that there is significant difference in the poloidal velocity and these so-

lutions also have different values of azimuthal velocity (Fig. 5.6 d). The solutions using

CR EoS, cannot be scaled with any particular fixed value of Γ. This has been shown

in many papers in the hydrodynamic (radiation hydrodynamic) limit (Chattopadhyay

& Ryu, 2009; Chattopadhyay & Kumar, 2016; Kumar & Chattopadhyay, 2017; Vyas &

Chattopadhyay, 2019). As is expected, solutions of different EoS have different overall

temperature variation (Fig. 5.6 e). In Fig. 5.6 (f), we present the variation of adiabatic

index for CR EoS and the comparison with fixed adiabatic index. For solutions with

different EoS, T (r) crosses each other at some distance and yet, Γ computed from CR

EoS, is neither 5/3 nor 4/3. It is clear by comparing Fig. 5.6 (e, f), that, the temperature

obtained by using Γ = 4/3 is less than that obtained by using Γ = 5/3, which clearly

should not be the case. Since, only very hot plasma should be described by Γ = 4/3 and

cold plasma (T < 107K, i.e., T << me−c
2/κB) should be described by Γ = 5/3, therefore,

relativistic flows described by fixed Γ EoS clearly has a temperature discrepancy.

5.4.6 Solutions for different plasma compositions (ξ)

In Fig. 5.7 we have presented outflow solutions for different compositions, ξ = 1.0 (solid,

black) is electron-proton, 0.8 (dashed, red), 0.5 (long-dashed, green), 0.3 (dashed-dotted,

blue), 0.1 (long-dashed-dotted, magenta) and other five parameters are fixed i.e., x2
A =

0.25, θA = 50, ψA = 55, F = 0.75, q = 500. In these solutions µ and σM increases slightly

with the increase in ξ, if xA, θA, ψA and q are kept constant. It is also reflected in the

plots of µS and µM, as well as LB and LM (Fig. 5.7 e, f). There is very little difference

in the streamlines of the jets (Fig. 5.7 a). However, by varying the composition of the

flow from electron-proton plasma (i.e., ξ = 1.0) to pair dominated flow ξ = 0.1, vp and

vφ of the flow varies significantly with ξ (Fig. 5.7 b, c). Even µS, µM and LB, LM also

depend on ξ (Fig. 5.7 d, e). Since ξ also influences the thermodynamics of the flow, the

temperature of the jet is also crucially influenced by its composition. As a result the

adiabatic index Γ also depends on ξ (Fig. 5.7 f). It may be noted, that the temperature

of pair-dominated flow is higher than electron-proton flow and therefore Γ at any given

z is lower for flows with lower value of ξ. Since we are comparing flows with same

xA (equivalently, MA), therefore from equation (5.14), it can be easily shown that the

temperature of pair dominated flow will be higher.

In Fig. 5.8, we plot magnetized outflow solutions for different compositions like

ξ = 1.0 (solid, black), 0.5 (dashed, red) and 0.1 (long-dashed, green), but are for the
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Figure 5.7: Outflow solutions for different values of ξ = 1.0 (solid, black),
0.8 (dashed, red), 0.5 (long-dashed, green), 0.3 (dashed-dotted, blue),
0.1 (long-dashed-dotted, magenta). All the curves are plotted for x2

A = 0.25, θA =
50, ψA = 55, F = 0.75, and q = 500. Panel (a) streamline on the xz-plane, (b) vp, (c)
vφ, (d) µS and µM, (e) LB and LM, (f) Γ versus logz. Here, solid circles and triangles
represent Alfvén and fast point locations (Singh & Chattopadhyay, 2019b).

same µ = 2.23362, θA = 50, ψA = 55, F = 0.75, and q = 500. So all these solutions are for

the same Bernoulli parameter µ. Since all other parameters are same, the magnetic

field components and streamlines for each are almost the same (Fig. 5.8 a, c), yet

vp & vφ (Fig. 5.8 b, d) distribution are completely different for flows with different ξ.

Moreover, even the temperature (T ) and Γ also depend on the composition parameter

(Fig. 5.8 e, f). The baryon poor outflows which have same Bernoulli parameter, are

slower and hotter, compared to electron-proton flow. However, the gain in vp is more

for pair dominated flow than the electron-proton flow.

In Fig. 5.9, we plot magnetized outflow solutions for different compositions like

ξ = 1.0 (solid, black), 0.5 (dashed, red) and 0.1 (long-dashed, green), but are for the

same L = 0.55585, θA = 50, ψA = 55, F = 0.75, and q = 500, i. e., we compare outflows
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Figure 5.8: Outflow solutions for different values of ξ = 1.0 (solid, black),
0.5 (dashed, red) and 0.1 (long-dashed, green). All the curves are plotted for µ =
2.23362, θA = 50, ψA = 55, F = 0.75, and q = 500. Panel (a) streamline on the
xz-plane, (b) vp, (c) Bp and Bφ, (d) vφ, (e) logT , (f) Γ versus logz (Singh & Chat-
topadhyay, 2019b).

launched with the same total angular momentum (or L) but different ξ. The streamlines

are again almost the same (Fig. 5.9 a), however, vp, vφ, and T or Γ (Fig. 5.9 b-f) are

significantly different for flows with different ξ.

It may be remembered that the general expression of constants of motion µ and L

in physical units are (see equations 5.12 and 5.11),

µ = hγ − $ΩBφ
ΨAc2

; L = $γhvφ −
$Bφ
ΨA

From equation (2.15), it is also clear that h depends on composition parameter ξ. So,

for a given µ or L, if Bφ is somewhat similar at the base, then γ (i.e., vp, vφ) and Θ

will depend on ξ. That is exactly what we see in Figs. 5.8 & 5.9. Dependence of flow

velocity and temperature on the composition of the flow, has also been shown in the
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Figure 5.9: Outflow solutions for different values of ξ = 1.0 (solid, black),
0.5 (dashed, red), 0.1 (long-dashed, green). All the curves are plotted for L =
0.55585, θA = 50, ψA = 55, F = 0.75, and q = 500. Panel (a) streamline on the
xz-plane, (b) vp, (c) Bp and Bφ, (d) vφ, (e) logT , (f) Γ versus logz (Singh & Chat-
topadhyay, 2019b).

hydrodynamic regime recently (Chattopadhyay & Ryu, 2009; Chattopadhyay & Kumar,

2016; Vyas & Chattopadhyay, 2019; Sarkar & Chattopadhyay, 2019). Therefore, it is

expected that some imprint of the flow composition should be there in radiative output

of the flow.

In Fig. 5.10, we plot an electron-positron outflow solution or flow having ξ = 0.0.

Other parameters are x2
A = 0.75, θA = 50, ψA = 55, F = 0.75, and q = 0.05. From Fig.

5.10 (b), it is clear that pure leptonic flow is also a trans-fast flow and the velocity

nature is similar to proton poor flows as plotted in Fig. 5.8 (b). In Fig. 5.10 (d), we

plot the forces which control the poloidal acceleration of the flow, for example, parallel

inertial force FI‖, parallel gamma force FG‖ ≡ FGP‖+FGφ‖, parallel total thermal gradient

force FTP‖ ≡ FT‖ + FP‖, parallel centrifugal force FC‖, and parallel magnetic force FB‖

(see equation C.5 in Appendix C). In the inset of Fig. 5.10 (d), we can note that these
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Figure 5.10: Outflow solutions for composition ξ = 0.0. All the curves are plotted
for x2

A = 0.75, θA = 50, ψA = 55, F = 0.75, and q = 0.05. Panel (a) streamline on
the xz-plane, (b) vp, (c) Bp and Bφ, (d) parallel forces, (e) perpendicular forces, (f) Γ
versus logz (Singh & Chattopadhyay, 2019b).

forces are comparable to each other at lower value of z, however for greater value of z,

FB‖ and FG‖ forces are controlling the poloidal acceleration. In Fig. 5.10 (e), we plot

all forces perpendicular (see equation C.6 in Appendix C) to the poloidal magnetic field

line, e. g., FI⊥ (inertial), FE⊥ (electric), FP⊥ (pressure gradient), FC⊥ (centrifugal), and

FB⊥ (magnetic). Perpendicular forces have similar nature to parallel forces, however,

at a larger distances, FE⊥ and FB⊥ controls the collimation of the flow. In Fig. 5.10 (f),

the adiabatic index for pure lepton flow varies from ∼ 1.44 to ∼ 5/3.

5.5 Discussion and Concluding Remarks

In this analysis, we have solved the relativistic magneto-hydrodynamic equations us-

ing the relativistic equation of state, in order to study relativistic outflows. A flow is
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relativistic on account of its bulk velocity (i.e., vp
<∼ c) and also in terms of its tempera-

ture i.e., when κBT >∼ mic
2 (subscript i represents the type of constituent particle). The

first condition arises for outflows, far away from a black hole, but the second condition

especially arises in the region close to a black hole horizon which acts as the base

of an astrophysical jet. A form of an EoS (CR) for a flow which can transit between

relativistic to non-relativistic temperatures has been used in this study. As has been

discussed throughout this chapter, Γ is a function of temperature in CR EoS and is

automatically determined from temperature distribution. There are a few papers in

hydrodynamic regime (read in absence of ordered magnetic field) which discusses the

application of relativistic EoS in accretion and jets (Chattopadhyay & Kumar, 2016;

Kumar & Chattopadhyay, 2017; Vyas & Chattopadhyay, 2019). However, as far as we

know, there have been no such previous attempts to solve relativistic, trans-Alfvénic,

trans-magneto sonic plasma expressed by relativistic EoS and study the effect of dif-

ferent compositions of the plasma. Since MHD equations are only applicable for fully

ionized plasma, therefore, the composition of the flow is likely to either be electron-

proton (ξ = 1) plasma or electron-positron-proton (0 < ξ < 1) plasma. In this chapter,

we have studied how various parameters like the Bernoulli constant, current distri-

bution, the location of the Alfvén point, etc. affect the outflow solution but only for

electron-proton plasma. And then studied the effect of different EoS and different

compositions on outflow solutions.

We investigated the contribution played by all the flow parameters, information of

which shapes the final solution of the outflow. We found that the current distribution

affects the streamline structure, as well as the flow velocities, especially close to the

base. We also found that, not only the current distribution, the angle of the poloidal

magnetic field line makes with the equatorial plane also affect the solutions. In par-

ticular, the streamlines which are more inclined to the equatorial plane are slower and

less collimated. In addition, narrower the polar angle of the Alfvén point with the axis of

the flow, slower and less collimated is the outflow. These two angles, namely ψA and θA

are independent of each other. For a given composition, the location of the Alfvén point

has significant effect on the Bernoulli parameter µ, the streamline and the Lorentz fac-

tor of the flow. We found that while the q parameter which depends on the entropy,

itself does not affect the outflow solutions significantly except the temperature, but in

conjunction with other parameters plays an important role.

We have also compared the outflow solutions using fixed adiabatic index EoS, with
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the one using CR EoS for a given value of µ, xA, θA, ΨA and F . Although the stream-

lines are similar, but the distribution of flow variables (vp, vφ, and T ) are significantly

different. Interestingly, solutions of all the EoS, are passed through both the critical

points (Alfvén and fast magnetosonic). It may be noted, that Vlahakis et al. (2003a,b)

only obtained trans-Alfvénic outflow using Γ = 4/3, but Polko et al. (2010) obtained

trans-Alfvénic, trans-fast outflow solutions using Γ = 5/3. However, we showed that

even with Γ = 4/3, one can obtain trans-Alfvénic, trans-fast outflow solution (Fig. 5.6

a). It appears that, depending on the values of other parameters, there exists a crit-

ical value of F , below which the flow passes through both the critical points, but for

higher values of F , the outflow is only trans-Alfvénic in nature. For example for the

parameters related to Fig. 5.1, trans-Alfvénic, trans-fast outflow is possible if F < 0.82.

We showed that, jets of all composition passes through the Alfvén and the fast

point, and get collimated to the axis after crossing the fast point. We compared so-

lutions with different composition, but for the same values of the Alfvén point, or the

Bernoulli constant, or the total angular momentum. In all the cases, composition has

little effect on the streamlines, but vp, vφ and T distributions are significantly different.

It means that the electro-magnetic output of such outflows should also depend on the

composition. Since pair-plasma have been regularly invoked as the composition of jets,

we have also presented one case of pure pair plasma (i. e., ξ = 0.0) outflow solution and

it nicely passes through both the critical points. The pair plasma outflow accelerates

mainly in the sub-Alfvénic region to super-fast region. The effect of composition is quite

pronounced in presence of gravity as was seen in the hydrodynamic limit (Chattopad-

hyay & Ryu, 2009; Kumar & Chattopadhyay, 2013; Chattopadhyay & Kumar, 2016) as

well as, in the non-relativistic MHD regime (Singh & Chattopadhyay, 2018a,b, 2019a).

So we expect the effect of CR EoS will be more pronounced in the SMHD limit, if gravity

is considered. However, consideration of gravity is beyond the scope of this analysis.

It may be noted that SMHD equations combined with pseudo-Newtonian gravity have

been used to study outflows previously, with very interesting results (Polko et al., 2013,

2014; Ceccobello et al., 2018). In this study, the jet only passes through two critical

points (Alfvén and fast) and not the slow. The slow point appears in presence of gravity.

The existence of slow-magnetosonic point ensures low velocity and high temperature

at the base of jet, or in other words, corrects the boundary condition at the jet base.

In all the solutions, the jet streamlines show that there is a possibility that after

crossing the fast point, over collimation/magnetic field pinching can produce shock.

Since the flow is moving with super-fast speed, so formation of shock is not going to
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affect the flow in the upstream and this shock location can be related to the fast point

location. In the case of M87, Asada & Nakamura (2012) showed that jet radius versus

jet height nicely fit parabolic curve up to 5×105rg height and after this jet radius versus

height follows conical structure. There is a dip in jet radius near the HST-1 which is

located at 5 × 105rg i.e., jet radius versus height departs from the parabolic structure

and this may be due to collimation shock.





Chapter 6

Conclusions

6.1 Major outcomes

In this thesis, a detailed study has been carried out for three astrophysical processes,

magnetized accretion, wind outflows, and jets which occurs around astrophysical ob-

jects. We treated these systems in magnetohydrodynamic (MHD) as well as special

relativistic magnetohydrodynamic (SMHD) regime in Newtonian potential (NP), and in

pseudo-Newtonian potential or Paczyński & Wiita (1980) potential (PWP). We also com-

pared our results by using fixed as well as variable adiabatic index EoS (CR EoS). As

an example of magnetized accretion, we focused on the accretion process onto magne-

tized compact object with hard surface like neutron star and white dwarfs. Although

we have mentioned the conclusions at the end of each chapter, here we summarize the

major results of these studies.

6.1.1 Multiple shocks in magnetized accretion flow onto neutron stars

and white dwarfs

In magnetized accretion, we have shown that with the inclusion of cooling (cyclotron

and bremsstrahlung processes) using fixed adiabatic index and CR EoS, it is possible

to connect the flow from the accretion disc to the star’s surface (neutron star and white

dwarf) through strong magnetic field lines. When this flow hits the hard surface of the

star, it forms a very strong surface shock (compression ratio ∼ 6). The cooling process

radiates the shock energy and slows down the flow to a negligible velocity. We have

found that bremsstrahlung emission dominates far from the star and near the star’s
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surface, however, cyclotron emission dominates from pre-shock to near post-shock re-

gion of primary surface shock (Fig. 3.9). The total luminosity has also been calculated

e.g., for NSs, 1034−36erg s−1. For a small parameter range (energy and rotation period),

there is also secondary weak shock along with primary surface shock. Even though

secondary shock is weak but the oscillations in the secondary shock, in principle, can

perturb the primary surface shock and make it time dependent. We have studied mag-

netized accretion flow onto WD and our results (e.g., shock height, shock temperature,

etc.) have a good match with the observation (section 3.4.3.2).

6.1.2 Effect of magnetic field on the dynamics

We have discussed the magnetic field is present everywhere in space and varies for a

wide range. Strong magnetic field controls the accretion process in case of NSs and

WDs by channelling the flow along with itself. It also affects the cyclotron emission and

hence the parameter space (see Figs. 3.3 c & 3.6 c). In the case of wind outflows, the

magnetic field highly affects its structure (Fig. 4.6). A low angular momentum wind is

blown out radially by the magnetic field and a high angular momentum wind has spiral

streamlines close to the central object, as matter moves outward, streamlines become

radial. Magnetic field also play a pivotal role in case of jets (shown in Chapter 5). We

have found that magnetic field accelerates the flow to a high velocity (some cases γ ∼ 40)

and at the same time, magnetic field also collimates the flow along the rotation axis

(see Fig. 5.1). This over collimation can produce shock due to magnetic field pinching,

because after the fast point, flow is disconnected transonically, therefore if shock is

formed after the fast point then it will not be going to affect the flow below it. So we

can relate the shock location to the fast point in case of jets.

6.1.3 Effect of plasma composition on astrophysical flows

Plasma composition is very important while studying flows because it directly affects

the inertia and thermal energy of the system. We have found that the flow variables

(e.g., velocity, temperature, etc.) highly depend on plasma composition. In magne-

tized accretion, we have shown that for the same set input parameters, electron-proton

flow has higher temperature and double shocks as compared to lepton dominated flow

(Fig. 3.15). The terminal speed of wind outflow also depends on the plasma composi-

tion. The terminal speed of the wind outflow has maximum value for certain plasma

composition for given energy (Fig. 4.11). For lower energy winds, the terminal speed
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maximizes for plasma composition having higher proton proportion, and for higher en-

ergy winds, the terminal speed maximizes for lepton dominated plasma. In case of

collimated outflows or jets, it seems that plasma composition has no effect on the jet

collimation but it affects the poloidal velocity, azimuthal velocity, and temperature of

the flow in sub-Alfvénic to the super-fast regime (see section 5.4.6).

6.1.4 Importance of relativistic EoS

We have mainly used CR EoS in our study of astrophysical flows due to its simplicity

and accuracy. CR EoS has temperature dependent Γ (specific heat ratio), therefore it is

being calculated throughout the solution. Another important point is, CR EoS allows to

control the composition of flow, so we have studied the effect of plasma composition on

astrophysical flows. We have shown that fixed adiabatic index EoS gives very different

results in systems having broad range of temperatures (section 5.4.5), so EoS having

temperature dependent adiabatic index is necessary while studying the dynamics of

astrophysical flows.

6.1.5 Nature of critical points in HD and MHD

In the case of HD, a critical point forms due to the balance between thermal pressure

gradient and gravity (see section 2.5.1). Presence of angular momentum modifies the

gravity to allow the formation of MCP. Usually, a transonic solution only passes through

single critical point (inner or outer critical point), however, in the presence of shock, it

can pass through multiple critical points. In the case of MHD, a critical point (Alfvén

critical point) forms even if gravity is off. Multiple critical points (Alfvén and fast critical

point) form if the matter has non-zero angular momentum (see Fig. 5.1). However, the

presence of gravity gives rise to slow critical point and we have found a maximum five

critical points in wind outflow (see Fig. 4.1). Another thing is, in MHD, a transonic

solution passes through three critical points (slow, Alfvèn, fast points) and these critical

points have the same entropy (see Fig. 4.2). It means, these three critical points

through which a transonic solution passes in MHD is analogous to a transonic solution

passing through a single critical point in case of HD.

6.1.6 Significance of strong gravity

In magnetized accretion flow, we have found that accretion solutions in Newtonian

gravity are alpha-type for most of the parameter (energy, rotation period) range i.e., they



MHD with Relativistic EoS 96

have two critical points, one is O-type and another is X-type. Only for a small parameter

range, we have accretion solutions which reach neutron star radius. However, in string

gravity (using PWP), a magnetized accretion solution can have three critical points, one

is O-type and two are X-type, and all the solutions of any parameter range reach the

star’s surface without any problem (section 3.4.1 and Appendix A). The inner X-type

critical point occurs due to the presence of strong gravity. These multiple critical point

solutions can also harbour multiple shocks. In case of wind outflows, we have found

that velocity is very small near the object and terminal velocity is higher in PWP as

compared to NP (Fig. 4.8).

6.2 Further implications and limitations

In the work presented in this thesis, we develop a model for magnetized accretion flow

onto compact objects which connect the matter from the disc to the object’s surface

and could explain the hot spot radiation which is usually observed in these kinds of

flows. Other crucial results are that plasma composition affects the flow variables in

case of magnetized accretion, wind outflows and jets, and the choice of EoS highly

affects the behaviour of solutions. These results could help to estimate the plasma

composition of astrophysical flows, and would give better insight.

Although this study has wide range of implications in astrophysical flows but it also

has some limitations. For example, PWP mimics the Schwarzschild black hole gravity

but it blows up at the event horizon, giving rise to high temperatures as compared

to general relativity. In magnetized accretion, the strong magnetic field assumption

restricts the analysis to poloidal flow but azimuthal flow is also important because

it could explain the transport of angular momentum between the star and the flow.

In case of collimated outflows or jets, we have ignored the gravity and hence are not

able to study the behaviour of outflows near the disc plane. The radially self-similar

assumption in jet study gives opposite temperature behaviour for Γ = 5/3 and Γ = 4/3.

Some recent studies have shown that self-similarity breaks down for outflows in the

presence of gravity.

In conclusion, this study shows that the magnetic field highly affects and defines

the dynamics of astrophysical flows (accretion, wind outflows, and jets) and the rela-

tivistic EoS (which has temperature-dependent Γ and composition parameter e.g., CR

EoS) is necessary while studying astrophysical flows. Such conclusions are inspiring
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and it points to another set of interesting problems, some of which are enumerated

below:

• Study magnetized accretion of neutron star and wind outflows from compact ob-

ject in GRMHD regime.

• Gravity highly affects jet at the base. We have been working to extend the study

of Chapter 5 by including gravity and studying magnetized jets from the base or

from near the central object.

• We know the spectrum from the astrophysical objects (e.g., AGN, accreting neu-

tron stars, GRBs, etc.) are time-dependent. We will use the knowledge of steady

state semi-analytical solutions to set the initial condition and boundary condi-

tions of MHD simulation codes, to study magnetized astrophysical flow around

compact objects.





Appendix A

Comparison between Newtonian

and Paczyński-Wiita gravity and

the different EoS

Here we compare solutions obtained by assuming (I) Newtonian potential (NP) and fixed

Γ EoS of the flow, with those obtained by using (II) Paczyński-Wiita potential (PWP)

and CR EoS. It is to be remembered that the solutions of Koldoba et al. (2002) is the

reference for type I solutions. As has been mentioned in section 3.1, the solutions of

Koldoba et al. (2002) ignore cooling, so to compare we also ignored cooling for both I

and II type solutions. The mathematical structure and solution methodology is exactly

the same as those mentioned in the main text. Since the equation (see in section 2.4.2)

is quite different than CR EoS, and moreover, does not contain the information of rest

mass energy density, therefore, the value of the Bernoulli parameter as well as, the

entropy accretion rate is quite different. Moreover, the unit system was chosen by

(Koldoba et al., 2002) is also different from this analysis. The unit of velocity chosen

in this analysis and type II solutions is c, while that of type I and Koldoba et al. (2002)

is Ωrd. To convert of B from Koldoba et al. (2002) to ours, we first obtain B in terms of

physical units and then divide that with c2. Moreover since EoS of type I solutions do

not contain the information of rest energy density we added it to make it comparable

to the B of type II solutions. Moreover, similar to Fig. 4 (a) of Koldoba et al. (2002), for

type I solutions, we choose Γ = 5/3 as the representative case.
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Figure A.1: Sonic point properties: (a) Bc—rc and (b) Bc—Ṁc. Solutions: (c) logΘ,
(d) logM as a function of r for flow parameters B = 0.9985 and P = 1s (star mark in
panel a). Each curve compares type I solution i.e., fixed Γ (= 5/3) EoS and Newtonian
potential (dashed, red) and type II or those with CR EoS and PW gravitation potential
(solid, green). In both the solutions cooling is ignored. (Singh & Chattopadhyay, 2018b)

In Fig. A.1 (a) we plot Bc as a function of rc for an NS of P = 1s. For the type I

case (dashed, red), there is only a maximum, but for type II (solid, green) case there is

a maximum and a minimum. Therefore for a given B = Bc within the maximum and

the minimum value, there can be three sonic points for type II solution, but only two

sonic points for the type I case. This is the effect of PWP over the NP. A stronger gravity

ensures the formation of the inner sonic point. The star mark corresponds to the value

B = 0.9985. Fig. A.1 (b) reconfirms the same fact that the inner sonic point does not

form for type I solutions. In order to make the entropy-accretion rate of type I solutions

comparable with that of type II, a large factor is multiplied with the former. Sonic point

properties are fundamentally different between type I and II cases. For P = 1s, type I

solutions have limited range of B which connect rd and R◦. But for type II case, global
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solutions connecting rd and R◦ can be obtained for all available B. In Fig. A.1 (c) we

compare logΘ with r for type I (dashed, red) and type II (solid, green) solutions. Type

I solution terminates before reaching the star surface. In Fig. A.1 (d) we compare

logM with r. Since type I solution has two sonic points, an outer X type, and a middle

O-type, therefore the accretion solution does not reach the star (M → 1 at r > R◦).

Type II solution is global. Since Koldoba et al. (2002) did not compute shocks, so we

just present the transonic solution. The M distribution of type II solution indicates

the presence of middle and inner sonic points (regions where dM/dr → 0). Since we

have ignored cooling in the results presented in this appendix, therefore, we see the

temperature monotonically increases inward.





Appendix B

Combination of forces for

magnetized outflow

Here we plot the competing combined forces acting on a magnetized wind/outflow.

The thermal force is FT, rotational force is FR, FG is the gravitational and FM is the
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Figure B.1: Comparison of combination of forces thermal and gravitational FT +FG

(solid, black) and rotational and magnetic forces FR + FM (dashed, red) along the
streamline. The flow parameters are E = 1.03075, L = 1.0 and ξ = 1.0 same as Fig.
4.3 (Singh & Chattopadhyay, 2019a).
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magnetic force along the streamline, as is described in connection with Fig. 4.3 (d).

We plot FT +FG (solid, black) and FR +FM (dashed, red) in Fig. B.1 in order to compare

the competing forces. Clearly, FR +FM is comparable FT +FG close to the central object

where it is launched, but is larger at very large distances. However, FT +FG dominates

over the other combination very close to the central object till unto a hundred rg.



Appendix C

Equations of motion for outflows

The Bernoulli equation (µ = γh−$ΩBφ/ΨAc
2) is obtained from the identity γ2

(
1− v2

φ/c
2
)

=

1 + γ2v2
p/c

2 (for more details see Vlahakis et al., 2003a),

µ2 =

(
h2 +

F 2σ2
MM

4sin2(θ)

x4cos2(θ + ψ)

)
×
(

G4(1−M2 − x2)2

G4(1−M2 − x2
A)2 − x2(G2 −M2 − x2)2

)
. (C.1)

Because tan(ψ) = ∂z
∂$ = d(G/tan(θ))

dG , therefore we have,

dG2

dθ
=

2G2cos(ψ)

sin(θ)cos(θ + ψ)
. (C.2)

The momentum balance equation (5.4) is basically sum of forces (see Vlahakis et al.,

2003a),

FG + FT + FC + FI + FP + FE + FB = 0, (C.3)

where,

FG = −γρh(v.∇sγ)v,

FT = −γ2ρ(v.∇sh)v,

FC =
γ2ρhv2

φ

$
e$,

FI = −γ2ρh(v.∇s)v− FC,

FP = −∇sP,

FE =
(∇s.E)E

4π
,

FB =
(∇s × B)× B

4π
.

(C.4)
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Here, FG is force due to Lorentz factor or gamma force, FT is temperature force, FC is

centrifugal force, FI is inertial force, FP is pressure gradient force, FE is electric force

and FB is magnetic force. By projecting equation (C.3) along the poloidal flow we get

an equation which describe poloidal acceleration of the flow,

−
γ4ρhv2

p

2c2
dv2

p

d`
−
γ4ρhv2

p

2c2
dv2
φ

d`
− γ2ρv2

p

dh

d`
+ γ2ρh

v2
φ

$
cosψ − γ2ρh

2

dv2
p

d`

−ρc2 dh
d`
− Bφ

4π$

d ($Bφ)

d`
= 0. (C.5)

In the above equation, forces terms1 from left to right side are recognized as FGP‖, FGφ‖,

FT‖, FC‖, FI‖, FP‖, FB‖ and we can note that FE‖ = 0 along the poloidal direction.

The transfield equation is obtained from the equation (C.3) by taking dot product

with −∇sA and we can write in term of forces like this (see Polko, 2013; Vlahakis et

al., 2003a),

FG⊥ + FT⊥ + FC⊥ + FI⊥ + FP⊥ + FE⊥ + FB⊥ = 0, (C.6)

so these components of forces are perpendicular to poloidal field line and pointing along

the axis n̂ = −∇sA/ |∇sA |. These perpendicular component of forces with common a

factor B2
0α

F−2

4π$G4 are,

FG⊥ = 0,

FT⊥ = 0,

FC⊥ = − x4
Aµ

2x2

F 2σ2
MM

2

(
G2 −M2 − x2

1−M2 − x2

)2

sin(ψ),

FI⊥ =
sin(θ)

cos(ψ + θ)

[
2M2sin2(θ)−M2 sin(θ)cos(θ)sin(ψ + θ)

cos(ψ + θ)

+M2 sin(ψ)sin(θ)

cos(ψ + θ)
−M2sin2(θ)(

dψ

dθ
+ 1)

]
,

FP⊥ =
sin(θ)

cos(ψ + θ)

x4

F 2σ2
M

[
−2(F − 2)

2Θh

KM2
− 2sin(ψ + θ)cos(ψ + θ)Θh2Γ

hK − 2ΘΓ

1

M4

dM2

dθ

]
,

FE⊥ =
sin(θ)

cos(ψ + θ)

[
Fx2 sin2(θ)

cos2(ψ + θ)
− x2 cos(ψ)sin(θ)sin(ψ + θ)

cos2(ψ + θ)
− x2sin2(θ)

cos2(ψ + θ)
(
dψ
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+ 1)

]
,

FB⊥ =
sin(θ)

cos(ψ + θ)

(
x4

Aµ
2x2

F 2σ2
M

(
1−G2

1−M2 − x2

)2
{
− (F − 1)

+

[
−1−M2 − x2

A

1−G2

dG2

dθ
+
dM2

dθ

]
sin(ψ + θ)cos(ψ + θ)

1−M2 − x2

}

+

[
−F sin2(θ)

cos2(ψ + θ)
− sin(ψ)sin(θ)

cos(ψ + θ)
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sin2(θ)
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(
dψ
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])
. (C.7)

1The derivative is taken by keeping A and s as constant, d
d`

= sin(θ)cos(ψ+θ)
$

d
dθ



MHD with Relativistic EoS 107

We simplify the equation (C.6) by using equation (5.16), has the form,

Gsin2(θ)
d

dθ

[
tan(θ + ψ)

1−M2 − x2

G

]
= (F − 1)

x4
Aµ

2x2

F 2σ2
M

(
1−G2

1−M2 − x2

)2

−sin2(θ)

(
M2 + Fx2 − F + 1

cos2(θ + ψ)

)
− x4

Aµ
2x2

F 2σ2
MM

2

(
G2 −M2 − x2

1−M2 − x2

)2

+2

(
F − 2

F 2σ2
M

)(
2Θhx4

KM2

)
(C.8)

By following Vlahakis et al. (2003a), the slope of M2
A at the Alfvén point i.e., pA =

dM2/dθ|xA
and Bernoulli equation (C.1) at Alfvén point is given by,

pA = dM2/dθ|xA
=

2x2
Acos(ψA)

σAsin(θA)cos(θA + ψA)
(C.9)

and

µ2 =

(
h2

A +
F 2σ2

M(1− x2
A)2sin2(θA)

x4
Acos2(θA + ψA)

)
×
(

x2
A(σA + 1)2

x2
A − [x2

A − σA(1− x2
A)]2

)
(C.10)

The Alfvén point condition is derived from equations (C.8) and (C.10) (see Appendix B

in Vlahakis et al., 2003a),
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[
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(C.11)

The coefficients of equation (5.16) are,

A1 =
µ2x6

A

F 2σ2
M

(
M2

G2

)
(1−G2)2

(1−M2 − x2)3
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sin2(θ)sin(θ + ψ)
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A

F 2σ2
M

h2

M2

(
2ΓΘ

hK − 2ΓΘ

)
cos3(θ + ψ)

sin2(θ)sin(θ + ψ)
, (C.12)

B1 =
M4

G4
(C.13)
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C1 =
h2x4

A

F 2σ2
M

cos(ψ)cos2(θ + ψ)

sin3(θ)sin(θ + ψ)

{
µ2G4(1−M2 − x2

A)2

h2G4(1−M2 − x2)2
− 1

+
2x2

1−M2 − x2

µ2

h2
[X − Y ]

}
. (C.14)

Here

X =
G4(1−M2 − x2

A)2 − x2(G2 −M2 − x2)2

G4(1−M2 − x2)2

Y =
G2(G2 −M2 − x2)(1−M2 − x2)(1− x2

A)

G4(1−M2 − x2)2

The coefficients of transfield equation (C.8) after simplification using the expressions

of A1, B1 and C1,

A2 = −sin2(θ)tan(θ + ψ), (C.15)

B2 =
sin2(θ)(1−M2 − x2)

cos2(θ + ψ)
, (C.16)

C2 = −sin2(θ)(1−M2 − x2)

cos2(θ + ψ)
+ sin2(θ)tan(θ + ψ)

[
x2

A

dG2

dθ
+ (1−M2 − x2)

1

G

dG

dθ

]
+(F − 1)

x4
Aµ

2x2

F 2σ2
M

(
1−G2

1−M2 − x2

)2

− sin2(θ)
M2 + Fx2 − F + 1

cos2(θ + ψ)

− x4
Aµ

2x2

F 2σ2
MM

2

(
G2 −M2 − x2

1−M2 − x2

)2

+ 2
F − 2

F 2σ2
M

(
2Θhx4

KM2

)
. (C.17)
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