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ABSTRACT

This paper is the first of a series of papers in which we will apply the methods we have developed for high-precision astrometry
(and photometry) with the Hubble Space Telescope (HS T ) to the case of wide-field ground-based images. In particular, we adapt
the software originally developed for WFPC2 to ground-based, wide field images from the WFI at the ESO 2.2 m telescope. In this
paper, we describe in details the new software, we characterize the WFI geometric distortion, discuss the adopted local transformation
approach for proper-motion measurements, and apply the new technique to two-epoch archive data of the two closest Galactic globular
clusters: NGC 6121 (M 4) and NGC 6397. The results of this exercise are more than encouraging. We find that we can achieve
a precision of ∼7 mas (in each coordinate) in a single exposure for a well-exposed star, which allows a very good cluster-field
separation in both M 4, and NGC 6397, with a temporal baseline of only 2.8, and 3.1 years, respectively.

Key words. astrometry – globular clusters: individual: NGC 6397 – globular clusters: individual: NGC 6121 (M 4) –
techniques: image processing

1. Introduction

Recent investigations have shown that imaging from the cameras
onboard the Hubble Space Telescopes (HS T ) can provide high-
precision astrometry for point-like sources (Anderson & King
2000, hereafter AK2000). There are several factors which make
imaging astrometry much more accurate from space than from
the ground. First, the absence of atmospheric effects allows us to
obtain diffraction-limited images, with a point-spread function
(PSF) which is nearly constant in time, and therefore amenable
to detailed modeling. Also, space-based observatories are free
of differential-refraction effects, which plague ground-based im-
ages not taken at the zenith. Finally, the weightless environment
means that telescope flexure does not lead to large changes in
the distortion solution, which means we can model the solution
to much higher accuracy.

However, despite all the benefits of imaging astrometry from
space, there are some significant limitations as well. First, the
need to download all the data taken to the ground puts a major
limit on how much data can be collected by HS T per hour. For
this reason, the largest detectors are 4096 × 4096, and almost
all of the detectors are undersampled in order to get the max-
imum sky coverage for the limited number of pixels. Ground-
based telescopes suffer no such limitations. They can be made
up of dozens of CCDs and can collect Terabytes of information

� Based on observations with the 2.2 m MPI ESO telescope.

every night. Furthermore each exposure can cover over 400×
the biggest HS T field-of-view. In addition, the fact that HS T
is undersampled introduces a significant complexity to the data
analysis. Special care must be taken to derive exquisitely accu-
rate PSFs (see AK2000), so that the positions measured with
them will be free from bias. Ground-based detectors can afford
to oversample the stellar image, so that sampling will not be
a limitation or complication for our accuracy. Finally, the fact
that time on HS T is scarce means that it is hard to get space-
based observations. By contrast, there are many ground based
observatories.

Even with its sampling and field-of-view limitations, the
phenomenal astrometric precision possible with HS T has al-
lowed us to undertake projects that were simply impossible be-
fore, such as:

– the geometrical determination of the globular cluster dis-
tance scale by comparison of the internal proper motions,
with radial velocity dispersion obtained from ground (Bedin
et al. 2003a);

– the study of the low-mass Main Sequence (MS) down to the
hydrogen burning limit (King et al. 1998, 2005; Bedin et al.
2001);

– the proper motions of the Galactic Globular clusters and
nearby galaxies; (Bedin et al. 2003b; Milone et al. 2006);

– the Galactic dynamic measurements (Bedin et al. 2003b);
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– the cluster rotation on the plane of the sky (Anderson & King
2003a);

– the double main sequence in Omega Centauri (Bedin et al.
2004);

– the anomalous white dwarf cooling sequence in the open
cluster NGC 6791 (Bedin et al. 2005a).

Nonetheless, even given the clear advantages of HS T , there are
a number of cluster studies that are better suited to ground-
based observations. For instance, studying the outskirts of clus-
ters requires large areal coverage but does not require a telescope
with the resolution of HS T . Many aspects of cluster evolution
can only be understood by putting together surveys done in the
cluster core with more extended surveys of the outer regions.
Therefore, large FOV ground-based studies are very much com-
plementary to the core studies possible only with HS T . These
large-FOV studies will tend to probe the clusters in the outskirts
where the density is low relative to the field, so proper-motion
cleaning will play an essential role in constructing a pure cluster
sample, as it has in many HST projects.

Our interest in the above applications, in particular in the
proper-motion aspects, has stimulated the effort to transfer
what we have learned by measuring high-accuracy positions
on HS T images to wide field, ground-based data. Much atten-
tion has been devoted over the years to software that can ex-
tract good photometry from ground-based images (DAOPHOT,
ROMAPHOT, etc.), but thus far very little attention has been
devoted to astrometry. Photometry and astrometry make very
different demands on PSF analysis. Photometry concerns itself
more with sums of pixels, whereas astrometry keys off of dif-
ferences between nearby pixel values, but there is no reason that
with a good PSF we cannot measure both good fluxes and posi-
tions. This paper is one step in that direction.

Over the last few years, several Wide Field Imagers (WFIs)
have come on-line at large ground-based telescopes (MPI-
ESO 2.2 m, AAT 4 m, CFH 4 m), and their number and their
field-of-view are continuously increasing (LBT 2 × 8 m,
VST 2.5 m, UKIRT 3.8 m, VISTA 4 m, etc.). These WFIs allow
us to map completely any open or globular cluster in our Galaxy
and their tidal tails, and to get accurate photometry for enormous
numbers of stars.

One of the most promising (yet still largely unexplored) op-
portunities presented by wide-field images involves astrometry.
Accurate astrometry over wide fields is important for a variety
of reasons. To be sure, an accuracy of 0.2 arcsec or better is
usually required to position point-like sources in the increasing
number of multi-slit and multi-fiber spectroscopic facilities. But
the most promising astrometric applications lie in the ability to
measure proper-motions for a large number of stars. In principle,
the ground-based WFIs should allow astrometric measurements
with an accuracy far better than the nominal 0.2 arcsec. As we
will show in Sect. 8, with a baseline of just a few years, images
collected with modern WFIs can provide proper motions more
accurate than those obtainable with old plates with a baseline
of several decades. (Note, though, that these plates will still re-
main valuable for long-term non-linear astrometry, such as the
determination of the orbit of long-period visual binaries, and of
course for long-term variation in the light curves.)

In this paper, we apply what we have learned from HS T to
the case of one particular ground-based wide-field imager: the
WFI at the focus of the 2.2 m ESO/MPI telescope, located at
La Silla (hereafter we will refer to it as WFI@2.2m). The WFI
camera is made up of 8 chips of 2142 × 4128 pixels each dis-
posed as illustrated in Fig. 1, with a pixel-scale of 238 mas/pixel.

Fig. 1. WFI@2.2m layout. Dimension of the chips, gaps, and the whole
field of view, are expressed in pixels, linear units, and arcsec. Also each
chip has different labels, in this paper we will refer to each chip with
the numbers going from [1] to [8] as shown in the figures.

The reason for choosing this detector is that the WFI@2.2m
camera was one of the first wide field cameras to become avail-
able to astronomers. It began its operation in 1999, and today
there are in the public archive many multiple-epoch images of
star cluster fields, with baselines up to 6 years.

There are clearly some things that only HS T can do, namely
astrometry and photometry of extremely faint stars or stars in
crowded regions, where there truly is no substitute for high
resolution. Nevertheless, we show here that many scientifi-
cally interesting projects can now be carried out with ground-
based imagers, such as the WFI@2.2m (discussed here) or the
OMEGACAM (coming on-line in 2007).

In this paper, we will go through the steps that are necessary
to get good astrometry with wide-field detectors. In Sect. 2, we
will describe the database used for this work. Section 3 will de-
scribe the method used to construct accurate PSFs. Section 4 will
give details on the fitting procedure, including neighbor subtrac-
tion. In Sect. 5 we will discuss the distortion correction, and its
stability over time. Section 6 will compare the astrometry ob-
tained with WFI@2.2m with astrometry obtained from HS T
archive images of the same region. Section 7 will describe the
local-transformation approach that allows us to minimize the ef-
fects of residuals in the distortion corrections. In Sect. 8 we will
apply the method to the case of the two closest globular clusters,
namely NGC 6397 and NGC 6121 (M 4). In Sect. 9 we briefly
discuss atmospheric effects. Finally, in Sect. 10 we summarize
our results, and briefly discuss possible interesting projects for
the future.

2. Observations

In this work, we use images for four different fields collected
with the WFI@2.2m; details of the data can be found in Table 1.

The first field is located in Baade’s Window (see Fig. 2).
Although the field contains two small globular clusters
(NGC 6522 and NGC 6528), most of the field has a smooth,
uniform distribution of Galactic bulge stars. The stars of interest
(the ∼2 mag below saturation in a 60 s V exposure), are typically
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Fig. 2. (Top-left) one of the images of Baade’s window used to calibrate the geometrical distortion of WFI@2.2m. In these images we see the
Galactic globular cluster NGC 6528 on chip [8], and NGC 6522 on chip [6]. The dark spot on chip [3] is just a very bright star. Also we over-plot
the footprint of a mosaic of 5 WFC/ACS fields available from the archive, that we used to cross check the astrometry obtained with WFI@2.2m
(cf. Sect. 6). This image gives a feel for the enormous amount of sky wide-field imagers can cover in a single exposure. (Top-right) a representative
sub-set of the image, which show the homogeneous distribution of stars in Baade’s window. (Bottom-left) zoom-in of 1000 × 1000 pixels around
the globular cluster NGC 6528. (Bottom-right) zoom-in of the globular cluster NGC 6522.

separated by a few arcseconds, so that there are many in each
field, but they are in general well enough separated to allow ac-
curate positions. We took images of this field with a range of
offsets so that we could measure the distortion in the detector
and evaluate its stability (cf. Sect. 5).

The second field is centered on the open cluster NGC 2477.
Several long exposures are taken in almost identical conditions
(comparable seeing, no large offsets, identical exposure times).
For this reason, and thanks to the ideal stellar density, it has been
possible to estimate directly the internal photometric and astro-
metric errors of our method from analysis of the residuals (cf.
Sect. 4.1).

The third field used in this work is centered on NGC 6397.
The images were taken at two different epochs separated by
3.1 yr. We will use the two epochs to derive proper motions
(Sect. 8.1).

The fourth field covers M 4. Images were taken at two differ-
ent epochs separated by 2.8 yr. Also for this object we will use
the two epochs to derive proper motions and distinguish cluster
stars from field stars (Sect. 8.2).

In anticipation of the need to reduce the enormous archive
of WFI@2.2m data in an automated way, we developed

software specifically for this instrument, though the soft-
ware can be easily adapted to other CCD mosaics, including
OMEGACAM. One particular effort we make to deal with the
huge images involved in wide-field surveys is that we take care
to do all stages of reduction in a short-integer format. This im-
proves read-in and read-out time, and helps enormously with
diskspace considerations (256 Mb compared with ∼60 Mb once
gzipped).

3. Derivation of the PSF

Anderson & King (2000) developed a method to obtain high-
accuracy astrometry on under-sampled WFPC2 images. A care-
ful removal of all the sources of systematic errors, such as biases
introduced by under-sampling, chip-manufacturing defects (see
Anderson & King 1999), and the need for an accurate correction
for distortion, led us to arrive at what is more or less the state of
the art in imaging astrometry from space.

We found in our treatment of HS T images that astrometry
is even more sensitive to the PSF model than photometry is.
This is because to first order, photometric procedures don’t really
care where the flux is, so long as it is included within the fitting
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Table 1. Description of the data-set used for this work.

filter Exp-time seeing airmass
Bulge — Baade window

calibration data, June 6, 2003
U 3 × 350 s; ∼1.′′3 1.18–1.23
V 30 × 60 s; 0.′′7–1.′′6 1.00–1.13

NGC 2477
test data, January 20, 1999

I#853 6 × 900 s; 0.′′9–1.′′1 1.05–1.33
NGC 6121 (M 4)

Epoch I: August 17-18, 1999
B 3 × 180 s; ∼1.′′3 1.04
V 3 × 180 s; ∼1.′′5 1.20

Epoch II: June 21, 2002

B 3 × 5 s; 1 × 100 s; ∼1.′′4 1.20
V 3 × 10 s; 6 × 90 s; ∼1.′′1 1.10

NGC 6397
Epoch I: May 14, 1999

B 1 × 20 s; 2 × 240 s; ∼1.′′1 1.10
V 1 × 20 s; 2 × 240 s; ∼1.′′2 1.08
I 1 × 20 s; 2 × 240 s; ∼1.′′0 1.09

Epoch II: June 18, 2002

U 3 × 35 s; 3 × 240 s; ∼1.′′4 1.08
B 3 × 5 s; 3 × 90 s; ∼1.′′2 1.10
V 3 × 3 s; 8 × 70 s; ∼1.′′3 1.11
I 1 × 3 s; 2 × 3 s; ∼1.′′1 1.21

1 × 49 s; 3 × 50 s; ∼1.′′1 1.21

radius (or aperture). Astrometric procedures, on the other hand,
key off of exactly how the flux is distributed among the pixels.
We therefore require an accurate PSF to compare the observed
pixel distribution with the model, in order to extract a position.

Even though the WFI detectors are not undersampled, our
positions are still critically dependent on the accuracy of our PSF
models. Thankfully, it is much easier to derive PSFs from well-
sampled images than from undersampled ones, so that much of
the careful work in AK2000 is not required in this regime. In par-
ticular, it is possible to derive a PSF from a single image, with-
out reference to a dithered set. This is good news, since thanks to
seeing fluctuations, the ground-based PSF cannot be presumed
to be stable from exposure to exposure.

3.1. The empirical PSF model

A PSF model simply tells us what fraction of a star’s flux should
fall in a pixel located at a given offset from the star’s center.
The PSF is therefore a two-dimensional function ψ(∆x,∆y) that
returns, for a given (∆x,∆y), the fraction of light that would fall
in a pixel at that offset.

Unlike DAOPHOT (Stetson 1987) and other photometry rou-
tines, our PSF model does not have an analytical-function as a
backbone. Rather, we represent the PSF entirely by an empirical
grid, a simple look-up table. The entire PSF is represented by an
array of 201 × 201 grid points. This PSF grid is super-sampled
by a factor of 4 with respect to the image pixels, so that the PSF
model goes out to a radius of about 25 pixels. The central grid
point at (101, 101) tells us what fraction of a star’s flux would
land in the central pixel of a star that is centered on a pixel. The
other grid points tell us what flux would fall in pixels at an array
of quarter-pixel offsets from the star’s center. Of course, stars
can land anywhere within a pixel, and not just at quarter-pixel

grid points, so we use a bi-cubic spline to interpolate the value
of the PSF in between the grid points.

3.2. Finding the PSF by iteration

Following the above definition, we can predict the value of a
given pixel (i, j) in the vicinity of a star if we know the star’s
total flux z∗, it’s position (x∗, y∗), and the sky background s∗:

Pi j = z∗ · ψ(i−x∗, j−y∗) + s∗.

For each star, we have an array of pixels that we can fit in order
to solve for the triplet of parameters: x∗, y∗, and z∗. The sky s∗ is
usually constrained by a more remote annulus.

If we have a set of positions and fluxes for a star, we can turn
the above equation around to solve for the PSF:

ψ(∆x,∆y) = (Pi j − s∗)/z∗.

This equation means that each pixel in the star’s image gives us
an estimate of the 2-dimensional PSF function at one point – at
the location (∆x,∆y) = (i − x∗, j − y∗). We construct a single
general PSF model by combining the array of samplings from
many, many stars.

The derivation of an accurate PSF is clearly an iterative pro-
cedure. Without a good PSF, we cannot derive good positions
and fluxes. Similarly, without good positions and fluxes, we can-
not derive an accurate PSF. Thus, our procedure iterates in order
to improve both the stellar parameters and the PSF model.

We start with simple centroid positions and aperture-based
fluxes. It does not take many iterations to arrive at good mod-
els for both the PSF and the stellar parameters. Our iterative
procedure here is quite similar to that of AK2000, except that
we do not require the second stage of their three-stage iteration.
Since our images are well sampled, we do not need to incor-
porate images taken from other ditherings to remove the star-
position/PSF-shape degeneracy inherent in undersampled detec-
tors. This simplifies our reduction procedure significantly, since
we can now operate on one exposure at a time.

3.3. Constraints on the PSF

We chose to use a grid-based model for the PSF because of its
flexibility. A simple grid makes it very easy to adjust the shape
of the PSF in exactly the place the data say that it may need
to change. Sometimes, however, such a grid can have too much
flexibility and can bend in unphysical ways. Thus, we impose
some constraints to ensure a reasonable PSF.

The first constraint we apply is smoothness. Since our de-
tector is well-sampled, the PSF should not change too much
from gridpoint to gridpoint. We enforce this by smoothing the
PSF with a quadratic smoothing kernel (again, see AK2000).
The quadratic kernel fits a quadratic to the gridpoints within
the kernel centered on that gridpoint (5 × 5 gridpoints, 7 ×
7 gridpoints, etc.), then replaces the central value with the value
of the quadratic at that point. We experimented and adopted the
largest smoothing kernel that was consistent with the star im-
ages. (If too much smoothing is done, stars have large residuals
at their centers.)

The second constraint we apply is that the PSF has to be cen-
tered on the grid. To enforce this, we fit the central 11 × 11 pix-
els of the PSF with a paraboloid, to estimate the apparent center.
If this center is not at the center of the grid, then we use bi-
cubic interpolation to re-sample the PSF at the locations where
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Fig. 3. This figure shows the locations of the 120 fiducial PSFs and the
process of interpolation to find a PSF at a particular point on the chip
(marked with an ∗). The dotted lines denote the region of the image
used to solve for each PSF.

the gridpoints should be and replace the PSF with the properly
centered model.

The final constraint we apply is normalization. It is nearly
impossible to measure all the flux in the PSF. The finite dynamic
range of detectors means that stars which are not saturated in
their cores are lost in the sky noise beyond about 8 pixels. The
saturated stars can be seen well beyond this, but it is hard to de-
termine what fraction of their flux we are seeing, since their cen-
tral regions are unusable. Our routine does derive a PSF out to
25 pixels using the saturated stars, but it is most accurate within
8 pixels, where it is derived from well-measured bright unsat-
urated stars. Thus, we normalized the PSF to have a volume
of unity within 6 pixels (1.5 arcsec), so that our normalization
would not be affected by the uncertainties related to saturation.
The WFI@2.2m PSFs typically have 15 percent of their flux be-
yond this radius, so determining total fluxes will require a simple
aperture correction in the calibration process.

3.4. Variability of the PSF with chip position

Our PSF-modeling procedures allow us to evaluate directly how
well the PSF fits stars. We initially derived a single PSF for the
entire 8-chip detector, but we soon found that there were system-
atic residuals in the stellar profiles, indicating that the PSF was
indeed quite different from one chip to another. Then we solved
for a single PSF for each chip. Again, the residuals indicated
that the PSF was changing shape from one part of the chip to the
other. This change was in fact quite significant: the fraction of
flux in the core was seen to vary by ±10%.

In the end, we determined that by solving for an array of
15 PSFs in each 2048 × 4096-pixel chip (3 across and 5 high),
we could capture almost all of the PSF’s spatial variability. Our
model, then, will feature an independent PSF at each of the lo-
cations in Fig. 3.

To construct a model for the PSF in between these fiducial
points, we will use simple linear interpolation, in a manner sim-
ilar to AK2000. To highlight how the PSF changes shape with

Fig. 4. Difference between the local PSF and the average PSF over the
entire field. White means more flux in the local PSF than in the average
PSF at that location.

location in the detector, in Fig. 4 we show the difference of the
120 representative fiducial PSFs and the average PSF across the
entire field of view. The PSF comes from one of the U-band
Baade’s window images. The PSFs are conveniently displayed in
order to map their spatial distribution on the detector. Notice how
the variations among contiguous PSFs are smooth. The PSFs
tend to elongate (mainly due to coma aberration), with the elon-
gation increasing radially as we move out from the principal op-
tical axis (near the center of the detector).

It is obvious from Fig. 4 that it would be possible to
reparametrize the PSF and reduce the number of degrees of
freedom used by taking advantage of the clear radial behavior.
But our aim has been to minimize the amount of human in-
tervention required, even at the expense of over-parametrizing
the PSFs. (This approach applies to our distortion solution, too).
Even though we may use more parameters than necessary, each
of our PSFs is still greatly overconstrained, so there is no real
advantage in seeking a slightly more efficient parametrization.
With our very general parametrization, our routines can operate
with a minimum of human oversight.

3.5. Choosing the stars used to model the PSF

In order to tell us something about the PSF, a star must have good
signal to noise in both in the core and beyond the core, so that we
can determine from its pixels how the flux is distributed. Good
stars for the PSF must therefore have a minimum of 5000 DN
(digital numbers) above sky in their central 3 × 3 pixels and
have no nearby neighbors. We like to have at least 50 such stars
for each of the fiducial PSFs we are solving for, so that we have
an over-determined problem and can iteratively reject stars that
are compromised by nearby neighbors, cosmic rays, or detector
defects.

The PSF-finding program is designed to require minimal
interaction with the user. The user supplies the program with
some simple finding criteria (minimum flux, minimum separa-
tion from brighter stars), and the program searches the image to
find stars that meet the criteria. The program then reports how
many stars are available for each PSF-region. If there are more
than 150 good stars in a single region (see Fig. 3), then the rou-
tine chooses the 150 best stars, based on brightness and isolation
from neighbors.
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In sparse fields (or equivalently, short exposures), there are
not always enough bright stars to use in PSF construction, and
we often must make a compromise between the number of stars
available to define the PSF and the level of PSF variability we
can practically model. For this reason, the program has been set
up to allow the determination of: (3 × 5) × 8(=120 PSFs), (3 ×
3)× 8(=72 PSFs), (2× 3)× 8(=48 PSFs), (2× 2)× 8(=24 PSFs),
or (1) × 8(=8 PSFs) to cover the detector. Based on the number
of bright stars available, the user must determine how finely to
model the PSF’s spatial variability.

3.6. PSF storage

Once an array of PSFs has been constructed for an image, we
save the array of PSF gridpoints in a simple fits image, which
can be inspected easily by eye. The image shown in Fig. 4 is the
difference between one such image and the average PSF for the
entire field.

3.7. Planning for the future

This routine has been designed with a lot of flexibility, so that
when larger wide-field arrays come on line, it will be easy to
expand the number of chips or the number of PSFs per chips to
deal with the new images in an automated way. The 3 × 5 array
of PSFs allow us to deal with the fact that most chips are rectan-
gular and not square. Simple quadratic variation would treat the
two axes differently and the PSF quality would suffer.

4. Fitting star positions and flux

Once an array of PSF models has been generated for an image,
we can use it to measure all the stars in the image. We designed a
simple iterative procedure that seems to work quite well for im-
ages with sparse to moderate crowding. Once again, the routine
is designed to have minimal input from users. The user simply
inputs what the faintest findable star should be (above sky) and
how close it can be to brighter neighbors, and the program finds
and measures all stars that fit these criteria. Our goal is not to
give a line-by-line account here of what the program does, rather
we will simply give the general procedure.

Fitting overlapping stellar profiles is clearly an iterative pro-
cedure. The routine keeps in memory four images: (1) the raw
image, sky-subtracted, and corrected for cosmic rays (CRs) and
bad pixels/columns, (2) the model image, which has a properly
scaled PSF for each found star, (3) the difference image, and
(4) the convolved image.

Our first iteration begins by finding all the saturated stars and
measuring fluxes for them. It also identifies all peaks that are
10 times brighter than the threshold and 10 pixels farther than
any brighter source, and adds them to the star list. It measures
fluxes for all these stars using the PSF, then subtracts the un-
saturated stars from the image. It does not subtract the saturated
stars, since the PSF is generally not reliable out in the wings, and
that would make the subtracted image less useful than the orig-
inal image. The program then takes this subtracted image and
convolves it with the PSF. This allows the signal from fainter
stars to be optimally enhanced for finding them. We also gener-
ate a model image which contains an estimate of the flux from
all the stars, saturated and unsaturated.

The second iteration then finds stars in the convolved image,
lowering the threshold to 5× the minimum and insisting again
that they be isolated from other unfound stars. Any stars found

in this iteration must be at least ∼15% brighter than the model
image, so that we can be sure of their authenticity. This require-
ment prevents us from finding very faint stars next to very bright
stars, but this is not a severe limitation, as we could not find such
stars reliably anyway. The benefit of the requirement is that we
do not end up identifying a lot of undocumented PSF features as
stars.

After this second wave of finding, we re-solve for all the
stars, using for each star an image that has all its neighbors
subtracted. This way, the fits for two nearby stars can quickly
converge upon an accurate position and flux for each. We repeat
these iterations, lowering the threshold, and incorporating fainter
and fainter stars with each iteration.

In Fig. 5 we show the various steps of the fitting procedure.
In practice, we often have to run the routine once or so to deter-
mine how faint the final threshold should be in order to find and
measure the faintest believable stars.

4.1. Direct estimate of internal errors

We used multiple observations of the Galactic open cluster
NGC 2477 (6 images of 900s in filter I#853)1 to provide a di-
rect estimate of the internal errors. We could not use the Baade’s
window data-set because of the large offsets (residuals in the ge-
ometrical distortion would mask our internal errors).

In the top panel of Fig. 6 we show the rms of the pho-
tometry as function of the instrumental magnitude. A horizon-
tal line shows that for well-exposed stars, we attain a single-
exposure internal precision of 0.005 mag. In the bottom panel,
we show the behavior of the rms in position, taken as the sum
in quadrature of the rms along the x, and y axes of the detectors.
That means that the single-exposure precision of the method is
∼0.04 WFI@2.2m pixels, or ∼10 mas (i.e. for each coordinate,
0.028 pixels, or 6.7 mas).

5. Geometric distortion correction

As we mentioned in the introduction, there is a lot of astro-
metric potential for these new wide-field ground-based images.
Although they can not even approach HS T precision, they can
cover an enormous field of view, and can go much deeper with
a better accuracy than the previous technology of photographic
plates. We saw in the previous section that we can measure
a reasonably bright star with a precision of about ∼0.03 pixel
(∼7 mas) in a single exposure. These tests involved a local, dif-
ferential measurement. We still need to determine what limita-
tions distortion will place on our ability to measure positions in
a more global sense. In particular, we need to ask: (1) how well
we can measure the distortion solution? and (2) how stable the
solution is. The answers to these questions will determine what
kinds of astrometric projects we can undertake.

When trying to measure the distortion in an instrument, one
would ideally like to have reference to a list of the positions of
stars in the field in some absolute and accurate system, so that af-
ter allowing for a linear transformation, we can see the distortion
in our detector by virtue of the position residuals. Unfortunately,
we are not aware of the existence of any astrometric standard
field that would allow a direct calibration of the distortion in
WFI@2.2m. One might be able to use Hipparcos or the USNO B
survey to calibrate the most global terms, but to fully calibrate

1 Note that #853 really designates a number ID, and not a wave-
length (see also http://www.ls.eso.org/lasilla/sciops/2p2/-
E2p2M/WFI/filters/).
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Fig. 5. An image subset of 70 × 70 pixels (∼17′′ × 17′′) is shown through the various steps of star fitting. On the top, the sky-subtracted image
(corrected for CRs and bad pixels) through the iteration 1, 2, 3, and 7. At each step the new difference image (between the corrected and the
model images) is calculated using the new detected objects, and the improved positions and fluxes of sources detected in the previous iteration.
The star finding at each step is done on the corresponding convolved star-subtracted images (shown in middle line of figures). For comparison, in
the bottom are shown, the raw image, the finding chart of the final list of detected objects, and the same area imaged with WFC/ACS HS T (data
set name j8kce1atq_drz).

WFI@2.2m, we would really need a field that is at least
0.5 degree on a side, with tens of thousands of stars, each of
which should have a position good to better than 5 mas.

We note that Platais et al. (2006) proposed constructing such
a frame, and are now in the process of taking observations for
it (private communication). Until such a calibrated field is avail-
able, we must undertake a self-calibration, similar to what we
have done for HS T (Anderson & King 2003b). This involves
imaging a nicely dense field with a range of telescope offsets.
Since we know that the stars have not moved much in the course
of the night, we can use their apparent positions in each of our
images to solve for the distortion in the detector.

So, to do this, as a back-up program during a non-
photometric night, we took several images of the Galactic Bulge,
in Baade’s Window. We chose this field because it is fairly ho-
mogeneous in both spatial and star luminosity distributions, and
the crowding is not excessive. This is true across the entire wide
field of view (see Fig. 2), with the exception of the cores of two
angularly small globular clusters. The exposure time of these im-
ages was optimized in order to obtain the necessary number of
stars with the needed S/N.

We took 30 images in the V filter, with large dithers follow-
ing the pattern shown in Fig. 7. The idea was to map the same
patch of sky into as many different places on the 8-chip detector
as possible. Unfortunately, the focus was unstable, and we had
to adjust it from observation to observation. Since we needed to
take a large number of images, we did not want to stop to con-
centrate on the focus, so we simply made small adjustments to

the focus between observations based on the FWHM of the pro-
ceeding images. This focus variation may well have an effect on
the distortion solution, but that is part of what we are trying to
study here.

5.1. Finding the average distortion solution

Our first step in solving for the distortion was to bring the eight
chips of each observation into a common meta-chip coordinate
system, using only integer-pixel shifts, in a way that the coor-
dinates of the pixels have been made to correspond as closely
as possible to their relative locations on the sky. In this crude
meta-chip system, we compared positions of the same stars in
different images, and found that the position residuals were as
large as 5−10 pixels – there is clearly a lot of distortion.

The procedure we followed to derive the correction for geo-
metric distortion is an iterative one. We first parametrized the
distortion solution by a look-up table of corrections for each
chip that covered each 2048 × 4096-pixel chip, sampling every
256 pixels. This resulted in a 9 × 17 element array of correc-
tions for each chip. The distortion-corrected position for a star
will then be the meta-image position plus the interpolated value
from the distortion-correction table:

Xcorr = xmeta + ∆xGC(x, y)
Ycorr = ymeta + ∆yGC(x, y). (1)

where ∆xGC(x, y) and ∆yGC(x, y) come from interpolating the ta-
ble for that chip.
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Fig. 6. Top panel: photometric errors per exposure as a function of
the instrumental magnitude defined as −2.5 × log DN (DN = Digital
Numbers), obtained from the 6 archive images in filter I#853, with small
off-sets, and identical exposure times. Each star has been measured at
least 6 times. In this data set saturation sets in at ∼–14.3, and is indi-
cated by a vertical dotted line. A horizontal line shows the average rms
for well-exposed stars (0.005 mag). Bottom panel: for the same data set,
astrometric rms both in WFI@2.2m pixels and in mas. Again the dot-
ted vertical line marks the beginning of saturation, and a horizontal line
shows the average astrometric rms for well-exposed stars 0.04 pixels,
i.e. ∼10 mas (meaning ∼6.7 mas for each coordinate). Note how posi-
tions are well defined also for moderately saturated stars (∼35 mas).

Before solving for the distortion, we first measured positions
and fluxes for all the stars in all the images and cross-identified
them using a master list. The challenge in finding an optimal
distortion solution is then to find the set of table values which
will allow the various star lists to be transformed into each other
using only linear transformations. So, we are looking for a sin-
gle set of table values that can be applied to all the images to
minimize the non-linear transformation residuals.

Since our aim is differential astrometry and not absolute
astrometry, we use general 6-parameter linear transformations.
These allow for offset, rotation, and scale changes, but also al-
low for the axes to be non-perpendicular and differently scaled.
These general linear transformations implicitly remove the first-
order atmospheric-refraction terms.

The transformation residuals are constructed as follows. For
each pair of images i and j, we find all the stars that are com-
mon to both star lists. These N common stars give us N pairs
of position associations: (xi, yi; x j, y j). We first correct these po-
sitions using the current best distortion solution, so we have
(Xi, Yi; X j, Y j) for each star. We then find the best linear trans-
formation between the frame by least squares.

This allows us to compute residuals. For each of the N stars
in image i, we have (xi, yi, δxi, δyi), where δx j and δy j corre-
spond to the difference between where the star was found in im-
age i and where its position in image j says it should be in im-
age i (based on the linear transformation). We also have a similar
residual for image j, (x j, y j, δx j, δy j). We generate such residuals
for each star common to each image pair. This results in many
tens of millions of residuals.

Each residual has several contributions: the distortion error
in one image, the distortion error in the comparison image, and

the inevitable measurement error. If we examine all the residuals
from all image pairs for a particular region of the detector, then
the average residual will be indicative of the distortion error at
that chip location. The other contributions to the residuals will
cancel out. Thus, we examine the residuals about each of the
distortion-array grid points to determine how the correction at
that grid point should change to better approximate the distortion
in the image.

We began the solution with a null correction table. We next
examined all the residuals in the vicinity of each grid-point
and adjusted the correction at that point by half the recom-
mended adjustment. We then smoothed the distortion table with
a 5 × 5 quadratic smoothing kernel to ensure that our correction
table would be smoothly varying. At the end of the iterations we
verified that this smoothing did not compromise our solution.

Once we have an initial estimate for the distortion-correction
array, we solve once again for the residuals, but this time we
include the correction in the computation of the residuals. The
residuals get smaller, and now reflect the errors in the distortion
solution. We repeat this several times until we converge on a final
average solution for the image set. Convergence is reached when
the iteration-to-iteration adjustment for the distortion-correction
array is less than 0.005 pixel.

The table of distortion corrections is shown graphically in
Fig. 8, where the corrections have been exaggerated by a factor
of 100. Note that the upper left chip is significantly rotated with
respect to the others.

5.2. Stability of the geometrical correction

Now that we have in hand an average, global distortion correc-
tion, we can investigate how it may change over time, both over
the course of a night and in the longer-term. To do this we took
the 30 V observations above and generated a master frame based
on the centermost dither pointing. We then transformed each im-
age’s star positions into this frame, and arrived at an average
position for the stars in this frame. This average frame allows
us to look at how the solution may vary over the course of a
night. Even though our average frame converged to better than
0.005 pixel we found that the individual frames can have resid-
ual distortions as large as ∼0.2 pixel (i.e. ∼50 mas). Much of this
is near the edge of the field and is likely due to telescope flex-
ure or focus variations. This would be extremely hard to model
predictively, and it likely would change as conditions change.

Comparing two different epochs, separated by ∼3 years, we
find that the geometric distortion can vary up to 0.4 pixel, or
∼100 mas. Of course, since the 2.2 m ESO/MPI telescope is
not fully dedicated to WFI@2.2m, and other instruments can
be mounted on the same telescope, manipulation of the camera
can easily result in a large variation of the geometrical distortion.
In particular we know from other data sets that a rotation of the
whole camera by up to few degrees may be present from run to
run.

We also found in our data set that filters: V , B, I and I#853
share the same distortion solutions down to ∼0.4 pixels. Filter U
is an exception, here the differences may rise up to 5 pixels close
to the edges of the field of view. In the present work we are not
using the U filter for astrometry. We will calibrate the geometric
solution in this filter when a better data-set becomes available.

Thankfully, our proper-motion membership measurements
do not require us to know the distortion solution perfectly. We
can minimize the impact of distortion errors by using local trans-
formations, which we discuss in Sect. 7.
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Fig. 7. (Left) dither pattern of the 30 images taken in the Baade’s window, in filter V . The coordinates, are in unit of pixels, and referred to the
master frame. (Right) depth-of-coverage map for the same 30 images.

Fig. 8. Map of the geometrical distortion presented in this paper. The
corrections are exaggerated by a factor of 100.

6. Comparison with HST

Although the ACS/WFC field of view is only 202′′×202′′, which
is just ∼1% that of the WFI@2.2m, we can still use HS T ob-
servations as a cross check on our measurement precision and
distortion correction.

As luck would have it, HS T happened to observe the same
Baade’s window field as we have been analyzing here within a
few days of our observations (GO-9690). With the typical mo-
tion of a bulge star being ∼3 mas/yr (Bedin et al. 2003b; Kuijken
& Rich 2002), we can assume that the stars are all in the same
place, and treat the WFC images as a perfect reference frame
against which we can compare our reductions. The footprint of
this 5 field WFC/ACS mosaic is superimposed on one WFI im-
age in Fig. 2.

We reduced the WFC images as described in Bedin et al.
(2005b) and tied them together, obtaining a huge distortion-free
frame covering over 50 contiguous square arcminutes with a
global precision of about 1 mas (see Anderson & King 2006).
This represents about 5% of the WFI@2.2m field of view.

So, to compare against the HS T frame, we cross-identified
the stars from our average frame in the previous section with the

stars in the HS T list. We then transformed the WFI@2.2m mea-
surements into the HS T frame using a global linear transforma-
tion to construct a measurement residual for each star. Since the
HS T positions are much better measured than those on ground-
based images, these residuals will provide a fundamental test for
the WFI@2.2m astrometry.

Figure 9 shows the residuals. In the 4 boxes on the left we
show the behavior of the residuals in x and y as function of both
the coordinates. In the top right panel we show the spatial distri-
bution of the stars on the WFC/ACS HS T -mosaic master frame.
Note that there are gaps, which are caused by the fact that we
required stars to be detected in 18 out of the 30 V images; the
dither pattern ended up placing the same star in the gap for many
exposures. The bottom right panel shows the distribution of the
residuals.

The fact that the solution appears to get worse over larger
distances is consistent with our finding in the previous section
that the solution is not stable at the 0.2 pixel level (50 mas),
and that most of the variation comes from low-order terms
which are worse at the edges. This independent test shows
that over distances of 5′ or so, an average frame produced
with our corrections is accurate to much better than 20 mas
(∼0.08 WFI@2.2m pixel). However, this figure and Fig. 6 show
that we can clearly measure stars with random errors of less than
10 mas (i.e. 0.04 pixel), so we will have to find some way to min-
imize these global errors. Local transformations will provide that
means.

7. Local-transformation approach

7.1. The reference-frame problem

We saw in the previous section that the distortion is not stable
at the level of our intrinsic astrometric accuracy (∼0.03 pixel,
or ∼7 mas, in each coordinate). This means that if we want to
do high-precision astrometry with our images, we need to find a
way to minimize the effect of uncorrected distortion. This led us
to investigate a local approach: differential astrometry.

If we want to measure how a star has moved from one epoch
to another, we always need to have a frame of reference, in which
we can compute a position at one epoch and a position at the
other epoch, and a resulting displacement. Now, we do not re-
quire an absolute frame of reference here. There are very few
stars in a typical field with absolute positions and motions that
are known to a useful accuracy.
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Fig. 9. Left panels: we show the residuals in the distortion solution for
y and x vs. dx and dy. Note that residuals are smaller than 20 mas in
the common area. Top right: spatial distribution of stars which have
measured positions in both the HS T and WFI@2.2m data base (one
WFC/HS T pixel is 50 mas). Bottom right: residuals of positions mea-
sured in the WFI@2.2m images and transformed into the HS T master
frame to cross-check the solutions.

Thus, our reference frames will necessarily be relative. By
this we mean that we will measure our motions with respect to
something in our field. We could just use all the stars as a refer-
ence and our motions would be with respect to the average mo-
tion of all the stars. Typically, however, we will pick a particular
population and set its motion to zero and measure motions rela-
tive to that population. Since cluster stars tend to have less inter-
nal dispersion than the field stars, it is natural to use the cluster as
the reference. We will thus identify the obvious cluster-member
stars (either by location in the CMD, or iteratively by the motion
itself, or both), and use them as the basis for the transformation.

Each star’s motion, then, will be measured with respect to
the bulk motion of the cluster. Cluster-member stars will by con-
struction have no motion on average, but if our measurements are
precise enough to resolve the cluster dispersion, this dispersion
will show up as residuals from the average. In the outskirts of
clusters, the member density is often extremely low. In these re-
gions, there may not be enough members in each chip to serve as
reference stars. Thus, it may be necessary to base the transforma-
tions on the non-member stars. In this case, the cluster may show
up as a concentration in the motion diagram that is not necessar-
ily at the origin. But this was not necessary for the the present
work; even in the outskirts of the clusters there were plenty of
member stars to use as reference stars.

We saw in the previous section that all the frames of our im-
ages may contain some uncorrected distortion, so we will not
have access to a flat global reference frame at any epoch. Rather
we have a set of frames, one for each image in each epoch. Each
frame has been corrected for distortion as well as possible, but it
will invariably have some residual distortion. This residual dis-
tortion tends to be of a global nature, in that we can compare
nearby stars more accurately than we can compare stars that are
farther apart. Thus, if we confine our comparisons to a small

region about each star, we can minimize the effects of distortion
errors.

In images with HS T , the distortion errors are small enough
that we can generally define a decent global reference frame
and use local transformations to improve positions in this frame.
With WFI@2.2m, the distortion errors are larger, and it is more
problematic to generate an accurate master frame. For this rea-
son, we decided to treat each frame independently and compute
a displacement for each star for each pair of frames. If we have
(say) 10 frames in the first epoch and 9 frames in second epoch,
this gives us 90 estimates of the inter-epoch displacement. These
estimates are not all statistically independent of each other, but
simple statistics can tell us how to combine them and estimate
the error in the average.

So, there are two steps in our construction of proper motions.
The first step is measuring a displacement between each im-
age pair. The second step is combining the many measurements
in order to obtain an average displacement from one epoch to
another.

7.2. Step 1: measuring displacements between a pair
of images

The first step in measuring a proper motion is to compute a dis-
placement for a star that is measured in two images taken at
two different epochs. We start here with a list of N stars that are
found in both images. We have a position for each star in both
distortion-corrected frames: (x1n, y1n) and (x2n, y2n). We can
use these associated positions to define a linear transformation
between the frames, and compute a global-transformation-based
displacement for each star. This displacement represents the dif-
ference between where the star was measured to be in Frame 1
and where the Frame 2 position implies it is in Frame 1 (based
on the positions of the common stars). If there is no distortion,
then this displacement will be a good estimate of the actual dis-
placement. However, if there is distortion in either of the frames,
then the estimate could contain some serious systematic errors.

Since we know that the WFI@2.2m frames suffer a distor-
tion error that increases over larger distances, we can minimize
the effect of uncorrected distortion on our displacements if we
measure the displacements using local transformations. Whereas
global transformations use all the stars to compute a single linear
transformation between two frames, a separate local transforma-
tion will have to be computed for each star we wish to transform
from Frame 2 to Frame 1.

We will compute this transformation using a local subset of
stars. To do this, we find the closest 55 reference stars to the
Frame 1 position, choosing only stars in the same chip as the star
in both images. The positions of these stars in both frames give
us 55 associations, positions in one image that correspond to the
same position in another image. We can use these associations
to define a least-squares linear transformation from one frame to
the other. We are careful not to use a star in its own transforma-
tion, as that would introduce a bias in its displacement (the bias
would reduce the true displacement by 1/55).

Figure 10 shows how the positions of reference stars in two
frames can allow us to define a transformation that maps the
coordinate system of one frame into that of another, so that we
can transform a position measured in one frame into that of the
other. For clarity, in this figure we only show a few reference
stars. In our transformations, we use 55 neighbors.

Now, not all of these stars are as good as the others at speci-
fying this transformation. For one, even though we chose our ref-
erence stars to be members based on their location in the CMD,



J. Anderson et al.: Wide field CCD ground-based astrometry. I. 1039

Fig. 10. Visualization of the local-transformation approach. Consider
Frame1 and Frame2, observing the same stars (indicated by ×s) but with
different orientation and shift. We are trying to transform the position of
the star ∗ measured in Frame2 into Frame1. In the local approach only
the closest stars (highlighted with ◦) are used to define the 6 parameter
linear transformations.

some of them may not be moving with the reference frame, so we
automatically reject all stars that are not moving with the “refer-
ence population”. There are also some stars that may be poorly
measured in one of the frames, or may have an anomalous mo-
tion. We do not want these stars to bias our transformation, so we
iteratively reject the 10 stars that have the largest transformation
residuals.

Once we have the 45 best local stars, they will define a trans-
formation that will allow us to transform (x2n, y2n) into the first
frame. We can then compute a displacement trivially. This dis-
placement, divided by the time baseline, provides one estimate
for the proper motion. This estimate is based solely on positions
of stars in the two images being compared.

7.3. Step 2: combining the measurements from all pairs

Using the technique in the previous section, we can compute
a locally measured displacement for each star for each inter-
epoch image pair: (∆xi j,n,∆yi j,n), where i is a first-epoch image
and j is a second-epoch image. If there are I first-epoch im-
ages and J second-epoch images, then we have I × J mea-
sured displacements for each star. These displacements are not
statistically independent, since each first-epoch image i uses the
same J second-epoch images to construct its displacements.

If we can assume that all the observations are good, then we
can take a simple average of these displacement measurements.
This average is the best estimate for the inter-epoch displace-
ment. Determining the error in this is trickier.

To estimate the error in our displacemets, we need to es-
timate the error in each first and second epoch position. We
compute intra-epoch displacements in a similar manner to the
above inter-epoch displacements by taking all pairs of images
from the same epoch. The rms of these displacements (the av-
erage will be zero by definition) will give us an estimate of the
accuracy of each individual measurement for each epoch, σx1

and σx2 . The error in the average epoch 1 position from this
would then be: σx̄1 = σx1/

√I and the error in the epoch 2 posi-
tion σx̄2 = σx2/

√J . The error in the difference would then be:

σ∆x =

√
σ2

x̄1
/I + σ2

x̄2
/J .

This gives us the error in the average.
We can also use the intra-epoch analysis to determine if any

of the measurements from an epoch are inconsistent with the
others. We can look at all the residuals for image i, and if there

is one much larger than σx1, then we can reject this observation,
and recompute this with I − 1 first-epoch measurements. This
will lead to a more robust average displacement.

We note that in many projects, we will not need to know the
errors of our motion measurements precisely. It is often clear
from the diagram itself that we have effected a near-perfect sep-
aration between cluster and field, and a precise understanding
of the errors is unnecessary. When we are trying to measure in-
ternal motions (dispersions), then a proper understanding of the
errors will be crucial.

Also, there are some data sets that will have more than two
epochs of observation. We can use the above techniques to com-
pute a displacement for each star for each pair of epochs. We can
then use a similar approach to combine these displacements into
a single proper motion.

8. Application

As a demonstration of the science that can be done with
these techniques, we downloaded multi-epoch observations of
NGC 6397 and NGC 6121 (M 4) from the ESO archive. These
two clusters have eccentric orbits, and at the present day they
are in a phase where their spatial velocity is significantly differ-
ent from the average velocity of field objects. They are also the
two closest clusters to us, so the relative motion between cluster
and field is particularly high. Their nearness also means that they
are best imaged with a large field-of-view detector (∼1 degree).

For these reasons, these two clusters are ideal targets to illus-
trate what can be done with wide field ground-based astrometry.
We should note that these images were not taken with astrome-
try in mind. An ideal astrometric data set would have multiple
observations of the same field with a large number of dithers at
each epoch, so that we can randomize any distortion errors and
improve our random measurement errors by

√
Nobs. These obser-

vations were taken with very little dithering, so in some sense,
they represent what can be done with the typical archival data
set. A properly dithered set at one (or preferably both) epochs
would allow to optimize the astrometric measurements.

8.1. NGC 6397

Table 1 lists the data available for NGC 6397. We reduced the
images for all four filters (U, B, V , and I), but only use the B
and V images for proper-motion analysis. The time baseline is a
little over three years.

The first thing to do is determine which stars we will use in
the transformations. Since we have multi-color observations, we
can use the CMD to select stars that are likely cluster members.
We selected stars along the main sequence and red giant branch
(RGB), leaving out a few cluster stars (such as blue stragglers
or horizontal-branch stars), a fact that will not hamper our re-
sults. Also, including a few field stars that happen to lie on the
cluster sequence will not affect our measurements, thanks to the
rejection criteria in our local transformations.

We started with a list of probable members and used their
positions in the images of both epochs to transform (via local
transformations) the position of every star in each second-epoch
image into the frame of the first-epoch image. We then averaged
these displacements as discussed above to arrive at a displace-
ment for each star. In this way, we obtained a set of diagrams
similar to those plotted in Fig. 11, which shows a vector-point
proper motion diagram, and the members and non-members se-
lection criteria with the resulting CMDs. We then iterated one
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Fig. 11. (Top panels) vector point diagrams of displacements of stars in units of WFI@2.2m pixels (238 mas/pixel) after 3.1 years. Since all the
reference stars were cluster members, the zero point of the motion is the mean motion of the cluster stars. (Bottom panels) instrumental color
magnitude diagrams. The magnitude is calculated as −2.5 log DN, where DN is the total digital counts above the local sky for the considered stars.
(Left) the entire sample; (center) stars with the same proper motion (within 0.05 pixels) as the MS stars, i.e. with proper motions smaller than
3.8 mas/yr. (Right) the stars that fell in the bulk of the field distribution. All these plot shows only stars with rms in positions inferior to 0.075 pixels
in each coordinate.

more time, using as cluster members only those stars that (a) sat-
isfy the above CMD criterion and (b) have a cluster-like motion.
This gives us our final motions, which are shown in Fig. 11.

Figure 11 shows the results in an analogous form to the Fig. 1
presented by King et al. (1998) for space-based observations of
the same cluster (for comparison, in that work the time base-
line was 2.7 years). The cluster-field separation here is nearly as
good as the one achieved with HS T with the same baseline. Of
course we do not go nearly as faint here, but we cover a larger
area.

In Fig. 11 we drew the circles which isolate the cluster and
field stars by eye. We defined as a cluster member a stars which
lies within 0.05 pixels (i.e. 3.8 mas/yr) from the origin of the
proper motion axes. The radius has been chosen as the best
compromise between losing members with poor proper motions
measurements, and including field objects. The internal veloc-
ity dispersion of the stars in NGC 6397 is expected to be about
5 km s−1, or 0.5 mas/yr at the distance of ∼2 kpc. This should

actually be measurable from the ground with a 10-year baseline,
or alternately more observations at each epoch.

Since the fainter stars are generally less well measured, we
often draw a more generous circle for them. Figure 12 illustrates
this. (The proper motions in this figure have been corrected for
differential chromatic refraction effects as described in Sect. 9.)

The success of the separation is immediately evident. The
relative average motion of the field with respect to the members
is ∼14 mas/yr. This is not the absolute proper motion of the clus-
ter, but only the motion relative to the bulk motion of the field.
To get an absolute motion we should either measure the cluster
proper motion with respect to background galaxies, or the field
proper motion with respect to background galaxies.

Note how the membership is well established even for satu-
rated stars whose instrumental magnitudes are brighter than V �
−14.5. Instrumental magnitude is defined here as −2.5× log DN
(Digital Numbers). With our seeing, the central pixel contains
no more than 8 percent of the light, and saturation starts at
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Fig. 12. Left: color–magnitude diagram for all the stars with positional rms less than 0.05 pixels. Middle: vector point diagrams for the same stars
in the corresponding magnitude intervals. A circle in each plot shows the adopted membership criterion for that magnitude interval: from top to
bottom: 0.050, 0.055, 0.065, 0.075, and 0.085 pixel in 3 years (i.e. 3.8, 4.2, 5.0, 5.8, 6.5 mas/yr). Note that the proper motions have been corrected
for DCR as described in Sect. 9. Right: color–magnitude diagram for the stars assumed to be members.

∼55 000 DNs. Therefore, saturation begins at an instrumen-
tal magnitude of ∼−14.5 [=−2.5 log (55 000/0.08)], for both B,
and V . Since our astrometry is done locally, and we need a dense
network of reasonably bright stars, it is hard to use the short ex-
posures in the astrometric analysis. However, we can use them
easily for the photometry, so for the saturated stars we show the
position in the CMD from the short exposures (with a zero-point
to match the long exposures) but adopt the astrometry from the
deep exposures. (In the next section, we will see that image-
motion can significantly affect astrometry in short exposures.)

In Fig. 13 we show how proper motions can be used to clean-
up other classical diagrams used in the analysis of stellar popu-
lations. The top panels show the color–color (U − B) vs. (B−V)
diagram, the middle panels, the color–magnitude diagram with
the largest color base-line U vs. (U−I), and finally on the bottom
the reddest color–magnitude diagram, the I vs. (V − I).

8.2. M 4 (NGC 6121)

The same exercise has been repeated for the case of M 4
(NGC 6121). In this case, the time base-line is just 2.8 years

(see Table 1). The separation based on the proper motion is
slightly worse than in the case of NGC 6397, mainly because of
worse-than-average seeing (which also affects the photometry).
Differential reddening may also be responsible for some of the
color broadening. Nevertheless, even with a smaller baseline and
poor seeing, we can still successfully separate field from cluster
stars (cf. Figs. 14, and 15). The adopted radius for the member-
ship circle is of 0.1 pixels, corresponding to a proper motion of
8.5 mas/yr.

9. Atmospheric effects

The atmosphere adds several complications to our analysis that
we do not have to deal with for HS T . The obvious complication
is the seeing, which limits our ability to resolve stars and mea-
sure precise positions, and makes the PSF change from image
to image. This is a random effect, but there are also systematic
effects such as: image motion due to isoplanatic patches and dif-
ferential chromatic refraction.

We must postpone to a future paper of this series a more
comprehensive study of the atmospheric effects, when a better
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Fig. 13. Additional color–magnitude and color–color diagrams from NGC 6397 WFI reductions and the proper-motion selection from the previous
figures.

data-base will be available2. The images here are too few, and
taken at a limited range of airmasses. In this section, we will
present results from a few tests, to quantify biases and give, a
posteriori, some simple corrections.

9.1. Image motion

One of the atmospheric effects we should be aware of is image
motion. Atmospheric turbulence introduces perturbations at dif-
ferent scales for different integration times. If we take very short
“speckle” images of a small field, we can get better resolution
at the cost of fewer photons. This is because all of the photons
go through essentially the same patch of atmosphere and are all
shifted the same way by the atmosphere. If longer exposures are
taken, the moving packets of air will cause the small field of
view to shift up and down together, blurring out the image. As
the exposure time goes up, the amplitude of the coherent shifts
goes down while the scale of coherence also goes down. Figure 6

2 At WFI@2.2m 60 h have already been approved to us for 2006.

in Platais et al. (2002) illustrates the effect of the atmosphere di-
rectly.

Lindegren (1980) provides a simple formulation to give us
an idea of what we can expect to see from the atmosphere in
each coordinate:

σT [arcsec] = 0.′′8 R0.25
[rad] T−0.5

[s] ,

where T � 300 R is the integration time in seconds. For the
WFI@2.2m field, typical Rmax � 0.005 rad (from center to edge
of our field), so for the NGC 2477 images, with exposure times
of 900 s, the maximum global effect we should expect is 6.9 mas.
This is in good agreement with what was obtained in Sect. 4.1,
and shown in Fig. 6 (lower panel). Zacharias (1996) found the
global effects of the atmosphere on differential astrometry to be
smaller than the predictions of Lindegren (1980), so our global
residuals are likely indicative of small distortion errors (as dis-
cussed in Sect. 5), in addition to the atmospheric effects. At any
rate, our use of local transformations will minimize our sensitiv-
ity to both distortion errors and larger-scale atmospheric effects.
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Fig. 14. As in Fig. 11 but for M 4. Stars with the same proper motion of the MS stars within 0.08 pixels (2.8 year baseline), are considered members
(i.e. the circle centered in the origin includes stars with proper motions smaller than 6.8 mas/yr). All these plots show only stars with rms errors in
positions smaller than 0.05 pixels in each coordinate.

9.2. Differential chromatic refraction

The effects of image motion above will average out if we take
enough long exposures, but differential chromatic refraction ef-
fect is a systematic effect that will not average out with more
observations.

Differential chromatic refraction (DCR) causes a shift be-
tween the centroid of the blue photons and that of the red pho-
tons. This will cause blue stars to have more of a shift towards
the zenith than the red stars will have. When we observe through
a filter, this effect is lessened, since all of the photons have about
the same wavelength, but the details of the spectral distribution
through the filter can still affect the centroid of a star’s position.
This is an effect that will not go away with linear transforma-
tions, so we must be careful to calibrate and remove it.

We note that the linearity of CCDs makes it easier to observe
and remove this effect. With the old technology of photographic
plates, the shape of a star and its apparent centroid depended on
its brightness, due to non-linearity effects. Since colors and mag-
nitudes are typically strongly correlated in a CMD, it was diffi-
cult to independently remove the atmospheric and photographic

effect. The linearity of CCDs allows us to remove much of this
degeneracy.

The best way to calibrate the DCR effect is to take multi-
ple observations at a variety of zenith angles, as described in
Monet et al. (1992). (See also Stone et al. 2003, and the refer-
ences therein.) Since the data set examined here was not opti-
mized for calibrated astrometry, we cannot solve for and remove
the DCR effect. However, we can still examine it. If there was
a difference between the DCR effect at one epoch compared to
another, then we would expect the DCR effect to generate an
apparent proper motion for blue stars relative to red stars.

In Figs. 16 and 17, we show the proper motion as a function
of color for stars on the horizontal and giant branches. Both sets
of stars should be moving with the cluster and have no motion
relative to the MS stars. Instead, we see that in both clusters there
is a color-related displacement of ∼0.05 pixel (∼12 mas) for M 4,
and a displacement of ∼0.02 pixel (∼5 mas) for NGC 6397.

We made linear fits to the distribution of points shown in
Figs. 16 and 17 (upper panels), and removed the DCR con-
tribution from the proper motions. The final, corrected proper
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Fig. 15. As in Fig. 12 but for M 4. A circle in each plot shows the adopted membership criterion for that magnitude interval: from top to bottom:
0.1, 0.1, 0.065, 0.1, and 0.1 pixels.

motions are shown in Figs. 16 and 17 (bottom right panels). In
properly planned observations, this correction can be made for
each image, as a function of the airmass of the observations. The
correction can also be done all within one epoch, so that we do
not need to assume anything about the proper motions.

10. Conclusion and future applications

In this paper, we have described how the software originally de-
veloped by Anderson & King (2000) for high precision relative
astrometry and photometry on WFPC2 and ACS HS T data has
been adapted to ground-based, wide field images from the WFI
camera at the ESO 2.2 m telescope. We have also obtained a
first approximation solution for the WFI@2.2m geometric dis-
tortion, and shown that it is not stable over time. Therefore, to
get precise relative proper motions, we need to follow a local-
transformation approach, as described in Sect. 7.

As proof of concept, we have applied this new technique on
two epochs of data for the two closest Galactic globular clus-
ters: NGC 6121 (M 4) and NGC 6397. The results, though based
on data not optimized for high-precision astrometric measure-
ments, are more than encouraging. We have shown that, under

average seeing conditions (∼1′′) the astrometric precision is of
7 mas in each coordinate, for well exposed stars in a single im-
age, i.e. only ∼3 (6) times worse than what we are able to obtain
with HS T using the WFPC2 (WFC/ACS) (which more or less
represents the “the state of the art” in imaging astrometry).

For both clusters, with three-year temporal baseline we have
been able to obtain proper-motion measurements that are precise
enough to allow a separation between field and cluster stars. We
expect to be able to measure the internal proper motions with a
precision adequate for stellar dynamics studies with a 10-year
baseline and a good number of images at each epoch.

The extension of the AK2000 software to ground-based data
makes possible a great number of new projects for the study of
the stellar population in Galactic open and globular clusters and
their tidal tails, in the Galactic fields, and in nearby galaxies, and
represents an important complement to what is presently done
with HS T images. Ground-based facilities are more abundant,
allow coverage of much larger fields, and are cheaper and easier
to access than HS T . HS T data are still of fundamental impor-
tance for the most crowded regions of star clusters and nearby
galaxies.
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Fig. 16. Bottom-left: in this panel we zoom in the vector point dia-
gram of Fig. 15 for stars in the instrumental B-magnitude between −16
and −14 for NGC 6121 before applying DCR corrections. RGB stars are
marked as circles, red HB stars as triangles, and blue HB with squares.
Also the average for each group (with error bars) are shown, using a
filled symbols. Top: the distribution of displacements as a function of
the color is modeled with a linear fit. Bottom-right: the same distribu-
tion after the corrections obtained from the linear fit.

The forthcoming even-wider-field facilities (e.g.
OMEGACAM@VST, VISTA, etc.), and the increased time
baseline (when we include archival first-epoch data taken in the
mid-90’s) will allow further exploitation of this technique here
described.

This technique may also be promising in view of the soon-
coming multi-conjugated adaptive optics, and non-classical
narrow-field astrometric corrections for telescopes larger than
10 meters (Lazorenko & Lazorenko 2004; Lazorenko 2006).

Finally, it is worth mentioning that most of the astromet-
ric and proper-motion measurements on HS T and ground-based
images are complementary to the data expected from SIM and
GAIA. First of all, GAIA is several years away in the future.
Realistically, the final catalog will be released not before the end
of the second decade of this century, at best. Also the catalog
will be limited to magnitudes brighter than V ∼ 19, and, most
importantly, to stars in less crowded regions.

Over the next few years, we will continue to improve
these techniques. Specifically, in the next months, we will have
WFI@2.2m data for 5 open clusters (60 hours of observing time
already scheduled). The new data, properly dithered in order to
optimize the astrometric measurements, will allow further im-
provement of the distortion solution, and more study of atmo-
spheric effects on our astrometry.

Fig. 17. As in Fig. 16, but for NGC 6397. This time the stars are
the one of the instrumental B-magnitude interval −16–−14 of Fig. 12.
NGC 6397 has no red HB stars.
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