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Abstract We have studied long-term changes in tropospheric NO2 over South India using
ground-based observations, and GOME and OMI satellite data. We have found that unlike
urban regions, the region between Eastern and Western Ghat mountain ranges experiences
statistically significant decreasing trend. There are few ground-based observatories to verify
satellite based trends for rural regions. However, using a past study and recent measurements
we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location
(Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the
concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the
values observed during 1994–95. Small but statistically significant decrease in noon-time peak
ozone concentration is also observed. Noon-time peak ozone concentration has decreased from
34±13 ppbv during 1993–96 to 30±15 ppbv during 2010–11. NOX mixing ratios are very low
over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios
are not significantly low compared to many cities with high NOX. The monthly mean ozone
mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values
during late Summer. Using a box-model, we show that presence of VOCs is also very
important in addition to NOX in determining ozone levels in rural environment and to explain
its seasonal cycle.
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1 Introduction

Ozone plays an important role in the earth’s atmosphere and has both good and bad effects on
all lives on the earth either directly or indirectly. Some of the well known effects are: (1) its
presence in the troposphere deteriorates air quality and thereby has harmful effects on health
(National Research Council 1991; WHO 2003), while its presence in the stratosphere protects
lives from harmful ultraviolet radiation (van der Leun et al. 1998); (2) it contributes to global
warming by absorbing the terrestrial radiation in troposphere (Fishman et al. 1979; Forster
et al. 2007); (3) High concentration of ozone in troposphere reduces crop yield and damages
the natural ecosystems (Wang and Mauzerall 2004; Mohammed et al. 2012; Mohammed et al.
2013). Natural source of surface ozone is intrusion of stratospheric ozone (Ganguly and Tzanis
2011). However, large part of it is produced in-situ through complex photochemical reactions
by oxides of nitrogen (NOX), which are also responsible for forming secondary aerosols and
acid deposition (Seinfeld and Pandis 1998; Varotsos et al. 2012). This in turn has many
negative effects such as corrosion or soiling of cultural and historical heritage buildings/
structures (Tzanis et al. 2009; Tzanis et al. 2011).

Accordingly, the concentrations of ozone and NOX have been considered important for
monitoring and controlling directly (Holland et al. 2005; Foster and Kumar 2011; Berman
et al. 2012; CAAC 2013) and for assessing indirectly through transport processes linked with
global warming and climate change related dynamics (Price et al. 1997; Walter and Heimann
2000; Ganzeveld 2002; Sanderson et al. 2003; Wiedingmyer et al. 2006). Production, loss and
transport of ozone and NOX, however, are not homogeneous across the globe (Cartalis and
Varotsos 1994; Chou et al. 2006; Jonson et al. 2006; Jaffe and Ray 2007; Tanimoto 2009;
Tanimoto et al. 2009; Tripathi et al. 2012; Engardt 2008) and thus their monitoring from
different parts of the globe, both urban and rural have assumed importance.

In the above context, several studies were initiated in India to study tropospheric ozone and
its precursors (Naja and Lal 1996; Naja et al. 2003; Beig et al. 2007; Lal 2007; Ghude et al.
2008; Purkait et al. 2009; Kumar et al. 2010; David and Nair 2011; Ali et al. 2012; Ganguly
2012; Swamy et al. 2012; Ganguly and Tzanis 2013). However, very little has been done from
rural India. One observational program, under the auspices of Indian Space Research
Organisation’s Geosphere-Biosphere Program (ISRO-GBP), to measure surface ozone, NOX,
CO and CH4 was initiated from Gadanki (13.48° N, 79.18° E), a rural site in South India and
observations were made during 1993–96 (Naja and Lal 2002). Realising the importance of
these measurements, we have re-initiated a long-term observational program by setting up the
first comprehensive observatory of the ‘Indian Climate Observatory Network’ (known as
ICON) over Gadanki in 2010.

In this paper, we present new observations on ozone and NOX concentrations, compare
these with those observed in the past (1993–1996) and satellite based observations and discuss
these results in the light of current understanding on the concentration of ozone from the rural
environment of Gadanki. The paper is organised as follows. In section 2, we describe the rural
site and the meteorological conditions prevailed during the observational period. In section 3,
we describe instruments and data-sets used in this study. In section 4, we present the results
and discuss the main findings in section 5.

2 Site description and meteorology

Observations presented in this work are from the National Atmospheric Research Laboratory
(NARL) located at Gadanki (13.48° N, 79.18° E), a rural site in the Southern part of India.
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NARL operates a large number of instruments, both ground-based remote sensing (viz. radio,
optical, acoustic) and ground-based and balloon-borne sensors to measure atmospheric and
ionospheric parameters. The laboratory is surrounded by hills having heights of ~750 m.
Observations of trace-gases were carried out from Gadanki, the first climate observatory of
ICON. The observatory is located on a hillock, a place whose altitude is the highest in the
NARL campus. The analysers are kept on the top floor of the ICON building. There is no
major industrial activity near the observational site except for the road connecting Tirupati and
Bangalore, where the traffic is low. The aerial distance from the road to the observation site is
1.5 km and height difference between the road and the place of observation is about 50 m. The
location is approximately 390 m above mean sea level.

Gadanki experiences tropical wet climate. Monthly mean relative humidity (RH), temper-
ature, wind speed, wind direction and monthly total rainfall over Gadanki for 2010–11 are
shown in Fig. 1. RH over Gadanki varies from 45 % in spring (pre-monsoon) to 90 % in winter
(north-east monsoon period). Monthly mean temperature varies from 31ºC (from end of spring
to beginning of summer) to 22ºC (in winter). Gadanki experiences two rainy seasons; one
during south-west monsoon (June to September) and another during north-east monsoon
(October to December). The period from January to May has minimum amount of rainfall.
Total rainfall during 2010 and 2011 was 1,151 mm and 882 mm, respectively. The dominant
wind directions close to surface are south-westerly during June to September, north-easterly
during October to December and south-easterly during February to April. The wind speeds are
generally higher during south-west monsoon with monthly mean values reaching as high as
2.3 m/s.

Fig. 1 Monthly mean temperature, relative humidity, wind speed, wind direction and monthly total rainfall over
Gadanki for 2010–2011

J Atmos Chem (2014) 71:95–112 97



3 Instruments and data

Surface concentrations of O3 and NOX were measured continuously using on-line analysers
(Model: 49i for O3, and 42i for NOX, Thermo Scientific, USA) since January 2010. Ambient
air is drawn through a 293 cm long inlet running from the top of the building to a glass
manifold located inside a room. The ozone analyser has in-built calibration unit for the span
and zero checks. Ozone analyser works on the principle of Beer-Lambert-Baugher’s law,
which relates absorption of light to the concentration of species. UV light of wavelength
254 nm is used as light source where ozone has strong absorption. Zero check for the ozone
analyser is done once in a week. The span checks were done four times during the study period
(2010–11). The changes in the consecutive calibrations have been very small. The zero offset
reduced by 0.1 ppbv and span constant reduced by 2 % during the study period. The lowest
detection limit of the analyser is 1 ppbv and the response time is 20 s. The accuracy of the
ozone analyser is ± 5 % for an ozone concentration of 60 ppbv.

The NOX analyser works on the principle of chemiluminescence. The analyser uses molyb-
denum converter to convert NO2 into NO and the intensity of light emitted in the reaction of NO
with O3 is related to total amount of NOX. The response time is 60 s and the lowest detection
limit is 0.4 ppbv for one minute time resolution. Molybdenum converter can also convert other
nitrogen containing substances to NO and hence NO2 measurement by this analyser should be
regarded as upper limit. The analyser is equipped with facilities of zero and span calibrations.
The zero calibration checks are done on weekly basis. Span calibration checks were done three
times during the study period. Here too there has been very small differences in consecutive
calibrations. Average differences of consecutive calibrations have been zero for NOX analyser
and variabilities of calibration constants have been of the order of 7 %.

To a small extent we have used total irradiance data from Pyranometer operated from ICON
terrace. In addition to our own data, GOME (Global Ozone Monintoring Experiment) and OMI
(Ozone Monitoring Instrument) satellites’ tropospheric NO2 data (Boersma et al. 2004; Boersma
et al. 2007) have also been used to study NO2 trend over South India. GOME instrument was
launched onboard ERS-2 satellite of European Space Agency in 1995. It was in operation from
1996 to 2003. The tropospheric NO2 retrieval from GOME has precision of the order of 35 to
60 % depending upon location. OMI instrument was launched in 2004 on board of NASA’s Aura
satellite. The OMI data are available globally at 0.125° X 0.125° grid resolution. OMI data has
error of the order of 0.7 x 1015 molec/cm2 which is about 40 % over Southern India.

4 Results and observations

4.1 Ozone variability

Figure 2a shows diurnal variations of surface ozone for four seasons: spring (March-May),
summer (June-August), autumn (September-November) and winter (December-February). The
peak concentration is found to be in the afternoon and low concentration just before the sun-
rise. The time of peak concentration changes from 16:00 h in spring to 14:00 h in autumn.
Observations also suggest that ozone mixing ratio builds up (at the rate 1 to 3.5 ppbv per hour
on average depending on season) during 7-14/16 LT and decreases rather slowly during 14/16-
7 LT. The diurnal range of mixing ratio is found to be in the range of 15–47 ppbv in spring,
14–31.5 ppbv in winter, 11.5 - 22.8 ppbv in summer and 11.4 - 20.8 ppbv in autumn. These
results suggest that the ozone mixing ratio maximises in spring followed by winter, summer
and autumn.
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Figure 2b shows monthly mean ozone mixing ratios for the period January 2010-December
2011. Monthly mean mixing ratios varies from 9 ppbv to 37 ppbv and follows a clear seasonal
cycle. It is generally higher during March-May and low during August-September. Variability
of ozone mixing ratio represented by standard deviation is also found to be high during March-
May and low during August-September.

4.1.1 Comparison of Ozone levels with other places

In order to compare these results with those observed from other locations in India, we
show monthly average surface ozone for few places in Fig. 3. Inset figure depicts the
map of locations from where observations were made. Sources of data for other stations
are as follows: Nainital (Kumar et al. 2010), Ahmedabad (Lal 2007), Pune (Beig et al.
2007), Hyderabad (Swamy et al. 2012) and Thiruvananthapuram (also known as
Trivendrum) (David and Nair 2011). Trivandrum has very different seasonal variation in
ozone compared to Gadanki and other stations shown in the figure. Trivandrum experi-
ences maximum ozone mixing ratio during winter whereas Gadanki and other stations are
experiencing maximum [O3] during spring. Trivandrum is located on west coast of India.
Because of its geographic location, Trivandrum experiences minimum RH and rain-fall
during February and soon after that RH starts building up due to air-masses coming from

Fig. 2 (a) Diurnal variation of ozone over Gadanki for the period 2010–2011 for four seasons. For the sake of
clarity, standard deviation is shown only for winter. (b) Monthly mean variation of ozone over Gadanki from
January 2010 to December 2011. Filled circles are monthly mean ozone concentration whereas vertical bars are
1σ standard deviation
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Indian Ocean and Arabian Sea. Whereas, in-land stations including Gadanki experience
minimum RH during spring. RH and ozone are known to be negatively correlated
(Camalier et al. 2007). There is steep rise in ozone concentration soon after the minimum
during monsoon season over most of the stations whereas in case of Gadanki, ozone
concentration during monsoon and winter is more or less same. This is again could be
linked to rain-fall and RH variation. Whereas other stations do not get rain-fall in winter,
Gadanki receives large fraction of annual rain-fall during winter. Ozone mixing ratio over
Gadanki is higher or comparable to some of the major cities of India for e.g. Kolkata
(Purkait et al. 2009), Ahmedabad, Delhi (Lal 2007) and Thiruvanthpuram (David and
Nair 2011). However, these cities have 3 to 10 times higher [NOX] compared to Gadanki.
The cities which have ozone mixing ratio higher than Gadanki are Hyderabad (Swamy
et al. 2012) and Pune (Beig et al. 2007; Lal 2007; Londhe et al. 2008). High altitude
remote sites like Mt. Abu (Naja et al. 2003) and Nainital (Kumar et al. 2010) have higher
ozone mixing ratio compared to Gadanki. However, the diurnal variation of ozone over
Gadanki is quite different from Nainital and Mt. Abu where noon-time peak is not very
prominent. This is indicative of in-situ ozone production through photochemical reactions
rather than being a place of high background ozone level.

4.2 NOX variability

NOX (NO+NO2) mixing ratio over Gadanki is relatively low. To have better insights in
observational skewness and variance, we have plotted median values of [NOX] (circles)
and its inter-quartile range (vertical bars). Diurnal variation with hourly median values
is shown in Fig. 4a. NOX has high mixing ratio in morning and evening and low
mixing ratio in afternoon. The morning peak mixing ratio is higher than evening peak
mixing ratio. Monthly median variation of [NOX] is shown in Fig. 4b. It varies from
0.5 ppbv to 2 ppbv. Being very low values, it is not possible to see seasonal variation
as clearly as for ozone nevertheless increase during winter and decrease during summer
is discernible.

Fig. 3 Comparison of monthly mean ozone concentration during 2010–11 over Gadanki with other places in India

100 J Atmos Chem (2014) 71:95–112



5 Results and discussion

5.1 Comparison between past and present observations

As noted earlier, (Naja and Lal 2002) have carried out observations of O3, NOX, CO and CH4 over
Gadanki between 1993 and 1996. The observations of [O3] were made from November 1993 to
December 1996while observations of [NOX]weremade from January 1994 toDecember 1995. For
the sake of brevity, observations reported in (Naja and Lal 2002) are referred as past observations
and the observations reported in preceding section are referred as present observations.

Average noon time maximum [O3] is 30±15 ppbv for the period 2010–11 and it is 34±13
ppbv for the period 1993–96. The difference is significant at confidence level of 99.9 %
though the satellite based tropospheric [O3] trend is insignificant. The comparison of monthly
mean [O3] for 2010–11 and 1993–96 is shown in Fig. 5. The difference between monthly
mean of all data as well as monthly mean of noon-time peak concentration is statistically
significant at confidence level of 99 % except for the March. Overall, the present [O3] is less
than the past and the difference between two periods is not uniform across all the months.
Winter months are having bigger differences than spring and summer months. April and May
have present [O3] higher than the past [O3]. The high values of present [O3] during April and
May are mainly due to night-time high [O3] during these months as can be seen in the Fig. 6b.

Fig. 4 (a) Diurnal variation of NOX over Gadanki for 2010–2011. The filled circles are median values and
vertical bars represent inter-quartile range. (b) Monthly median concentration of NOX over Gadanki for 2010–
2011. Vertical bars are inter-quartile range
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A comparison of diurnal variations of [O3] for the past and present is shown in Fig. 6 for
different seasons. Night-time [O3] have relatively less seasonal variation and small differences
between past and present values. In case of day-time mixing ratios, past [O3] values are
significanlty higher than the present [O3] for Winter and Autumn. The amplitude of diurnal
cycles for all the seasons are more in past observations compared to present observations.
Winter season has highest amplitude difference of 13.4 ppbv between past and present
followed by autumn (12.7 ppbv), spring (6.6 ppbv) and summer (0.33 ppbv). This indicates
there is a decrease in photochemically produced ozone during recent years. The morning rate
of change of ozone is high (7 ppbv per hour) during 1993–96 compared to 2010–11 (4 ppbv
per hour) as shown in Fig. 7. Asymmetry between morning and evening rate of change of
ozone is characteristics of rural environment (Naja and Lal 2002).

Fig. 5 Comparison of monthly mean ozone mixing ratios between past (1993–1996) and present (2010–2011)
observations

(a) Winter (b) Spring

(c) Summer (d) Autumn

Fig. 6 Comparison of seasonal diurnal patterns of surface ozone over Gadanki for the past and present
observations
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There has been very few studies that report ozone trend over regions of India. Naja and Lal
(1996) have reported a significant increase in [O3] over Ahmedabad – a major city in western
part of India. Ali et al. (2012) have reported increase in [O3] over Delhi but decrease over Pune
for the period between 1990 and 1999. As noted earlier, ozone trends are not uniform over
globe. Cartalis and Varotsos (1994) have reported increasing trend of ozone over Athens,
Greece during last century. Chou et al. (2006) have reported increasing trend of ozone over
Taipei, Taiwan during 1994 to 2003 in spite of decrease in volatile organic compounds, NOX

and non-methane hydrocarbon. They attribute increase in ozone to reduced titration of ozone
by NO. Jaffe and Ray (2007) have studied ozone trends for period from 1987 to 2004 over 11
rural and remote sites in north and western US including Alaska. They have found increasing
trend over seven out of eleven sites. (Tanimoto 2009; Tanimoto et al. 2009) have studied ozone
trends over several remote sites in Japan. They have found overall increasing trend over all the
sites with mountain sites having higher increasing trends. They attribute increasing trend to
increase in atmospheric pollution in Asian countries and their long-range transport to Japan.
Fiore et al. (1998) studied ozone trends over 549 sites across contiguous United States and
found no significant increase in ozone during 1980 to 1995 period. Decreasing trends are
predominantly observed over urban regions attributable to decrease in NOX and VOCs. Jonson
et al. (2006) have studied trends of ozone and its precursor gases using observations and
model. They have found significant decrease in summer time ozone over Europe during 1990–
2002, however, the decrease in annual averages is less than expected from reduction in
precursor gases. Tripathi et al. (2012) have studied ozone trends over eight sites across
Ireland from 1994 to 2009. They have found either negative trend in peak ozone concentration
or no increasing trend. In majority of cases ozone trends when decreasing attributed to new
pollution control norms to reduce precursors like NOX and when increasing attributed to
increase in precursor gases or long-range transport of pollutants. In one instance increase in
[O3] is linked to decrease in [NO] (Chou et al. 2006) .

The comparison of monthly median [NOX] for the two periods is shown in Fig. 8. The
present [NOX] are nearly half of the past values. Statistical significance was determined using
t-test and it is found that the difference is statistically significant at the level higher than 99.9 %
for all the months. Absolute value of difference is of the order of 0.9 ppbv except for October,
November, December and February. The difference during October, November, December and
February is 0.5, 0.5, 0.6 and 0.6 ppbv respectively. No comparison could be made for

Fig. 7 Comparison of rate of change of ozone between past and present observations
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September. There are several places around the world e.g. the USA, Europe, etc. where a
decreasing trend in NOX is observed (Akimoto 2003). However, these changes are mostly in
the western world. In Asia, mostly increasing trends in NOX or NO2 are reported (Akimoto,
2003; Sheel et al. 2010; Hilboll et al. 2013). Main reason for increase in NOX or NO2 mixing
ratios over Asian region is increase in industrial and vehicular emissions. However, rural
regions have different economic activities compared to urban regions and far less industrial-
ization and vehicular emissions. Over a rural location, the major sources of NOX are soil
emission, lightning activity, nitrogen-based fertilizer and biomass-burning. It is difficult to say
at this stage whether the decrease in concentration is part of continuous decreasing trend or a
difference between anomalous years. Nevertheless, one can conclude with great degree of
confidence that NOX mixing ratio is not increased over this region in contrast to the trends
observed over urban regions of Asia.

To look into the aspect whether the ‘decrease’ in NOX is a localized phenomenon or a
phenomenon applicable to a larger region, we have used GOME and OMI satellite data
(Boersma et al. 2004; Boersma et al. 2007). GOME and OMI are two different sets of satellite
sensors and there is a difference in spatial resolution of two data-sets as well. This requires special
care in calculating trends from combined data set. Different sensor characteristics and spatial
resolution can produce differences in mean and variability. We have followed the method
described in (Mieruch et al. 2008) and (Hilboll et al. 2013) to calculate bias and trends. While
the decrease in NO2 values is not seen over Gadanki as one might have expected from ground-
based data of NOX, satellite data show statistically significant decreasing trend in west of Gadanki
and increasing trend in East and South of Gadanki with Gadanki in transition zone (Fig. 9).

The trend analysis for entire South India is shown in Fig. 9b. Grid-boxes having a trend,
which is statistically significant at confidence level 95 % or more are shown with black dots.
There are few hotspots with very high increasing trends viz: Chennai, Vizag, Bellari, Madurai.
This may be due to recent industrialisation of these places. Besides hot-spots, there are regions
of increasing trend. The spatial pattern of increasing trends follows geographical pattern of
river basins in South India known for intense agricultural activities. Increase in use of
fertilizers can be one of the reasons for increasing trend over these regions. However, more
interesting is the decreasing trends observed between mountain ranges known as Eastern and
Western Ghats. The decrease in troposheric NO2 over this region is found in-spite of increase
in population and vehicular traffic. Possibly the decrease over this region is linked with
changes in land-use pattern since soil emissions are one of the major source of NO2 in the
atmosphere. Sheel et al. (2010) and Hilboll et al. (2013) have reported increasing trend over
urban centres in India. Ghude et al. (2008) studied NO2 hotspots and trends over five regions
of India using GOME and SCIAMACHY data between year 1996 to 2006 and have reported
increasing trends. They attribute increase in NO2 to rapid industrialisation and vehicular traffic

Fig. 8 Comparison of monthly median of NOX mixing ratios during 1994–95 with that observed during 2010–
11. Vertical bars represent inter-quartile range
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growth. However, there exist high degree of heteorogeneity in NO2 trends over sub-regional
scale. Out of all the regions studied by Ghude et al. (2008), the minimum trend was found over
South India, 1.38±0.12 % per year. They have also found far less number of hot-spot over

Fig. 9 (a) Monthly mean tropospheric column NO2 concentration observed over Gadanki using GOME (1996–
2003) and OMI (2005–2011). (b) Trends in tropospheric NO2 over South India calculated for the period between
1996 to 2011 after combining GOME and OMI data. Grid-boxes with black dots show statistically significant
trend at confidence level 95 % or more. Trends are calculated using method described in (Hilboll et al. 2013) and
(Mieruch et al. 2008)
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South India compared to other parts of India. Since regulations and population dynamics are
not significantly different from one region to other region in India such heteoroogeity in trends,
we believe is driven by geographic condition of the place and factors such as land-use change.

Though there is a significant decrease in surface [NOX], decrease is less for surface [O3].
Photochemical production of ozone depends on [NO] and [NO2] in complex manner. In such a
low [NOX] environment, other factors such as presence of VOCs play very important role in
determining ozone-production-efficiency of NOX molecules. Using numerical simulations, we
try to understand seasonal variation of [O3], its high mixing-ratio in-spite of low [NOX] and
level of decrease in [O3] expected based on [NOX] decrease.

5.2 Numerical simulation of Ozone at Gadanki

Our objective in carrying out the numerical simulations is to understand seasonal variation of
[O3], the high ozone values over rural areas of India in-spite of low [NOX] in comparison to
big cities and the role of [NOX] decrease on [O3] with respect to past values. It is not expected
that the numerical simulation will exactly reproduce observed [O3] since VOC values are not
based on observations over the place, cloudiness is over simplified, the [NO] are near detection
limit of the instrument and hence not constrained for diurnal variation, and transport processes
are not considered. Nevertheless the simulations are helpful in understanding the role of NOX

in diagnostic manner and to identify gaps in observational strategy to better understand the
trends. Numerical simulation of ozone concentration over Gadanki are carried out using
NCAR Master Mechanism (NCAR-MM) Box (0D) model (Madronich and Calvert 1990;
Aumont et al. 2000; Stroud et al. 2003; Madronich 2006). The model consists explicit and
detailed gas phase chemistry combined with box model solver. Photolysis rates are calculated
using TUV (Tropospheric Ultraviolet and Visible) radiation model included with NCAR-MM.
The model has ability to simulate 5,000 reactions among 2,000 species (Madronich 2006). The
model is developed at National Center for Atmospheric Research (NCAR), USA and can be
downloaded from NCAR/UCAR Community data portal [http://cdp.ucar.edu/].

We have run the model for various sets of inputs and simulated the [O3] and [NO] on
diurnal cycle. Each simulation is done for 48 h and the values from the second cycle of 24 h
are reported in this study. In Fig. 10, noon-time peak ozone mixing ratios from various model-
runs are compared with observations made during (a) 2010–11 and (b) 1993–96. Inputs for
various model runs are described in Table 1. The model run M-01 has set of inputs which are
very close to observed values during 2010–11 or climatological values over Gadanki and
assuming zero VOCs. [NO2] for M-01 is fixed to monthly mean diurnal variation during
2010–11. Initial [O3] is set to 21 ppbv which is close to observed night time [O3] over
Gadanki. Diurnal variation of boundary layer height (BLH) over Gadanki is taken from
(Basha and Ratnam 2009). Four different sets of BLH variations are used for the four seasons.
In order to simulate effect of cloudiness, we have used pyranometer data but in indirect way.
Clouds affect surface [O3] because of their ability to control amount of surface reaching solar
radiation. The daily mean surface reaching solar energy is maximum in April with value 6.6
kWhr/m2. Simulations are carried out assuming clear sky fraction equal to ratio of daily mean
solar energy for a given month to daily mean solar energy received in April. This approach
makes April month simulations as fully clear sky day simulation and for other months the
simulations are for partially cloudy sky in relation to April simulation. To understand the role
of VOCs for tropical climate, in the model run M-02, ozone simulations are carried out
keeping all the inputs same as M-01 except for VOCs. Since no observations of VOCs are
available for this region, we have used diurnally varying isoprene values reported in (Karl et al.
2007). Karl et al. (2007) have studied diurnal variation of isoprene and monoterpene over
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Central Amazonian which has the tropical climate. Model run M-03 is similar to M-02 but the
Isoprene values are reduced by factor 10. Model runs M-04 to M-06 are similar to the model
runs M-01 to M-03 but the [NO] and [NO2] are scaled by factors such that [NOX] matches
with values reported in (Naja and Lal 2002) for year 1994 to 1995. The multipliers are of the
order of 2. Besides these model runs, we have done several runs to study sensitivity to various
input parameters. It is found that the noon-time peak [O3] is highly sensitive to [NO], [NO2],
isoprene and cloudiness. It is moderately sensitive to CO, aerosol properties, boundary layer
height and columnar ozone concentration.

Fig. 10 Comparison of monthly mean noon-time peak ozone mixing ratios between box-model (NCAR-MM)
and observations for year (a) 2010–11 and (b) 1993–96. For all the model runs NO2 concentration is constrained
to monthly mean observations. Model run M-01 and M-04 are without any VOCs. M-02 and M-05 are with
Isoprene values based on (Karl et al. 2007) M-03 and M-06 are with Isoprene values equal to 1/10 of the values
used in M-02 and M-05. (c) Difference between past and present noon-time peak ozone mixing ratios for
observations and models
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Presence of isoprene in the atmosphere is very important in determining peak [O3]. In the
absence of isoprene, simulated peak [O3] is significantly smaller than the observed peak [O3]
for both the present and the past [NO2] scenarios. In the absence of isoprene, it is also not
reproducing the observed seasonal cycle of [O3]. When the diurnally varying but seasonally
fixed isoprene concentration as reported in Karl et al. (2007) is included, the simulated peak
[O3] is moderately higher than the observed peak [O3] for the first half of year but significantly
higher than the observed peak [O3] for second half of the year in case of present day scenario
(M-02 in Fig. 10a). This is because inclusion of isoprene in simulations leads to seasonal cycle

Table 1 Inputs for numerical simulations of ozone concentration over Gadanki

Model Runs Inputs Input Sr. No. Values or basis of values

M-01 Ozone (Initial conc.) 1 4.9628 x 10^11 molec./cm^3 (21 ppbv)

Ozone columnar 2 247 DU

Ozone background 3 Zero

CO 4 8.2115 x 10^12 molec./cm^3 (352 ppbv)

CH4 5 4.0473 x 10^13 molec./cm^3 (1,736 ppbv)

Temperature 6 Obs. mean diurnal variation for given month

H2O 7 Obs. mean diurnal variation for given month

N2 8 1.8415 x 10^19 molec./cm^3

O2 9 4.8951 x 10^18 molec./cm^3

Aerosol Optical Depth 10 0.3

Single scattering albedo 11 0.92

Angstrom Exponent 12 1.13

Surface albedo 13 0.08

NO (initial conc.) 14 Zeroth hour value from obs. monthly mean
diurnal variation during 2010–11 in their
respective months.

NO2 (diurnally constrained) 15 Obs. monthly mean diurnal variation during
2010–11 in their respective months.

Boundary Layer Height (BLH) 16 Diurnally varying and season dependent.
Based on (Basha and Ratnam 2009) .

Clear Sky Fraction 17 Diurnally fixed but varies monthly based on
Fig. 12.

Isoprene (diurnally constrained) 18 Zero

M-02 Inputs 1 to 17 Same as in M-01

Isoprene (diurnally constrained) Diurnally fixed to the values reported in
(Karl et al. 2007); Same for all months

M-03 Inputs 1 to 17 Same as in M-01

Isoprene One tenth of the values used in M-02

M-04 Inputs 1 to 13 and 16 to 18 Same as in M-01

NO (initial conc.) M-01 NO input value being scaled such that
(NO+NO2) will match (Naja and Lal 2002) .

NO2 - as above -

M-05 Inputs 1 to 17 Same as in M-04

Isoprene Same as in M-02

M-06 Inputs 1 to 17 Same as in M-04

Isoprene One tenth of the values used in M-05
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with two maxima in simulated values, one during spring and another during autumn. However,
in-case of observations, only spring-time maxima is observed. This could be because of
seasonally fixed isoprene but seasonally varying [NO2] and solar radiation. It is worth noting
that spring is the season of biomass burning (agricultural waste burning in open and forest fires)
in South India which can be a potential source of various VOCs that may participate in ozone
production but in winter there is very little biomass burning activity. Hence, one can expect a
seasonally varying VOC concentration over South India.

The simulated peak [O3] is very high in comparison to observed values for the past [NO2]
when isoprene concentration at the same level as in reported in Karl et al. (2007) are used
(M-05 in Fig. 10b). When isoprene concentration is scaled down to 1/10 of values being used
in the run M-02 and M-05, the simulated peak [O3] is also reduced but still higher than the past
observations.

The differences in simulation output, which include isoprene are considerably greater than
observed differences (Fig. 10c). At the same time, absence of isoprene in simulation inputs
(model runs M-01 and M-04) is also not able to explain differences as they are found to be
reverse way that is past low and present high [O3]. There exists a possibility that isoprene or
VOC concentrations may not have been same in past and present. In absence of observations
of VOC it will be difficult to quantify role of [NOX] and effect of its decrease on ozone
concentrations, nevertheless the simulations bring-out the importance of VOCs in rural
atmospheric chemistry and their role in high ozone level in spite of low [NOX]

6 Summary

Surface level NOX and O3 observations are carried out over a rural location in Southern India.
Though the [O3] is not very low compared to major cities of India, concentration of NOX is
quite low and typical of a rural background site. The ground-based measurements of [NOX]
from period 2010–11 are nearly half of the past values (1994–95) in relative terms and about
0.9 ppbv low in absolute terms. A statistically significant decreasing trend in tropospheric
columnar [NO2] is also found in GOME and OMI satellite data over several parts of the South
India. This is in contrast to urban places and fertile river basins where these satellite sensors
have detected increasing trend. A small but statistically significant decrease is also observed in
[O3] compared to past. The decrease is observed mostly in day-time ozone concentration
indicative of decrease in photochemically produced ozone. The decrease is high during winter.
A likely cause of decrease of [O3] is a decrease of [NOX], however magnitude of decrease of
[O3] is less than expected from decrease in [NOX].

Presence of VOCs is very important to explain not only the high [O3] in spite of low [NOX]
but also the observed seasonal cycle to some extent. Though we have used only isoprene, it
fairly outlines the importance of VOCs for rural atmospheric chemistry. Overall our results
indicate that the atmospheric chemistry and trends of trace-gases such as O3 and NOX in rural
India where a major bulk of population lives are distinctly different from urban India.
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