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Abstract. We study the viscous advective accretion disc around non-
rotating black holes with variable adiabatic index. In thisstudy we have
developed all possible global accretion solutions e.g. Bondi type, smooth
and shocked solutions with and with out viscosity with multispecies fluids
and as well as standing shock parameter space with and without viscosity
for different composition parameter.
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1. Introduction

Accretion onto black holes is the most favoured model to explain luminosities, vari-
abilities and mass ejections from AGNs and microquasars. Therefore, understanding
the physics of accretion is of paramount importance. PurelyBondi flow onto a black
hole (Bondi 1952) is of low luminosity, and Keplerian disc produces high luminosity
(Shakura & Sunyaev 1973) but cannot account for non-thermalradiation. The ad-
vective model and two component accretion flow model (TCAF) (Chakrabarti 1989;
Chakrabarti & Titarchuk 1995; Chakrabarti 1999) can qualitatively explain the obser-
vations from black hole candidates in all frequency range. However, most of these
works were done with fixedΓ (adiabatic index) equation of state (EoS). A black hole
accretion from infinity to horizon cannot be described by a fixed Γ EoS, since for
ultra-relativistic temperature (T ) the flow is described byΓ = 4/3, for non-relativistic
T it is Γ = 5/3, and generally it will be 5/3 > Γ > 4/3. Inviscid accretion models with
relativistic EoS and in general relativistic regime, were employed by various authors
(Fukue 1987; Chattopadhyay 2008; Chattopadhyay & Ryu 2009;Chattopadhyay &
Chakrabarti 2011; Kumar et al. 2013). The temperature rangeof the advective accre-
tion flow is 106K < T < 1011K, which warrants the fluid to be at least fully ionized.
This means that such a flow if composed of similar kind of particles, then it should
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be electron-positron fluid (e− − e+), since a fluid composed of oppositely charged free
protons or other heavier particles is a physical improbability. These authors have also
shown that fluids composed of dissimilar particles fore.g.,electron-proton (e− − p+)
show highly energetic phenomena like shock in accretion. However, Chattopadhyay
(2008) showed thate− − e+ is much colder and much less relativistic than any fluid
composed of dissimilar particles. In fact they showed that althoughe− − p+ is much
hotter and thermally much more relativistic thane−− e+, but the most relativistic fluid
is the one with proton proportion∼ 20% of electron number density.

In this paper, we employ Newtonian equations of motion with relativistic EoS,
and the properties of Schwarzschild metric will be mimickedby the pseudo-Newtonian
(hereafter, PW) potential (Paczyński & Wiita 1980). We study viscous accretion flow
with relativistic EoS around black holes and show that shocks do form in a significant
range of boundary conditions. In the next section, we present the equations and in the
last section we present the solutions and the discussion.

2. EoS and accretion model with multispecies fluids

We consider steady state, viscous, rotating and axis symmetric accretion disc around a
Schwarzschild black hole. The hydrodynamic Navier-Stoke equation for an accretion
disc in cylindrical co-ordinate (r, φ, z) is written as: The radial momentum equation
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the angular momentum distribution equation
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and thez component is assumed to be in hydrostatic equilibrium and gives the local
disc half heightH = 2(r − 1)

√

Θr/t̃. The integrated continuity equation is written as

Ṁ = 2πΣvr, (3)

where,Ṁ is the mass accretion rate of the flow andΣ = 2ρH is the vertically integrated
density. Other local flow variablesv, p, λ andρ are fluid velocity, thermal pressure,
specific angular momentum and density of the flow, respectively. Wrφ = Σνr(dΩ/dr)
is rφ− component of viscous stress tensor andν = αa2/(ΓΩK), wherea, Ω, andΩK

are local sound speed, local angular velocity, and local Keplerian angular velocity,
respectively. The unit of distance isrg = 2GMBH/c2 = 1, unit of timetg = rg/c = 1
and unit of mass is the black hole massMBH = 1. The entropy generation equation,

Σv

(

dē
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− p
ρ2

dρ
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)

= Q+ − Q−, (4)

whereē is specific energy density. Ife is the energy density then ¯e = e/ρ. Here,
Q+ = W2

rφ/η andQ− are heating and cooling term, but we consider only the heating
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term. The isotropic pressure (p) and mass density (ρ) are defined as

p = 2ne−kT and ρ = ne−me− t̃, (5)

where,t̃ = (2− ξ + ξ/η), ξ = np+/ne− is ratio of proton number density to the electron
number density,η = me−/mp+ is ratio of electron mass to proton mass,k is Boltzmann
constant andT is temperature of the flow. EoS for multispecies fluids which we have
used is given by (Chattopadhyay 2008; Chattopadhyay & Ryu 2009),

e = ne−me−c
2 f , (6)

where,

f = (2− ξ)
[

1+ Θ

(

9Θ + 3
3Θ + 2

)]

+ ξ

[

1
η
+ Θ

(

9Θ + 3/η
3Θ + 2/η

)]

. (7)

Here,Θ = kT/(mec2) is the dimensionless temperature of the flow. Hence ¯e = c2 f /t̃.
The enthalpy of the flow is defined as

h = (e + p)/ρ = ( f + 2Θ)/t̃. (8)

Now integrating Eq.(1) with the help of Eqs.(2-4, 8), we get

E =
v2

2
+ h − λ

2

2r2
+
λλ0

r2
− 1

2(r − 1)
, (9)

and is known as specific grand energy of the flow (Gu & Lu 2004).E is constant
through out the flow even in presence of viscosity. Putting RHS of Eq. (4) as zero,
and integrating it with the help of Eqs.(5-8), we obtain the adiabatic equation of state,

ρ = K exp(k3) Θ3/2(3Θ + 2)k1(3Θ + 2/η)k2, where,K = adiabatic constant. (10)

Here,k1 = 3(2− ξ)/4, k2 = 3ξ/4, andk3 = ( f − t̃)/(2Θ). Using equations (3) and (10),
we can define entropy accretion rate (Ṁ) as

Ṁ = Ṁ
4πK = vH exp(k3) rΘ3/2(3Θ + 2)k1(3Θ + 2/η)k2. (11)

Ṁ is also a constant for inviscid multispecies relativistic flow. Simplifying Eq. (4) by
using Eq. (3), we have

dΘ
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= − 1
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2Θ
v

dv
dr
+

3Θ
r
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And Eq. (1) gives velocity gradient equation as

dv
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a2

Γ+1( 5r−3
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v
2
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=
N
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Accretion onto a black hole is transonic, because supersonic inner boundary and sub-
sonic outer boundary. Therefore, at certain distanceN = 0 andD = 0, this gives the
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Figure 1. We plot Mach number (M = v/a) with log(r) for different viscosity parameter (α).
The solutions for parameters (E, λ0) = (1.001, 1.45) (a-d), (E, λ0) = (1.001, 1.55) (e-h),
(E, λ) = (1.001, 1.65) (i-l), and (E, λ) = (1.004, 1.65) (m-p). Viscosity parameterα, increases
towards right, andξ = 1.0 for all the plots. The vertical dash-dotted line indicate the sonic point
of the flow and solid lines are accretion solutions.

sonic point conditions.
Shock Conditions : The Rankine-Hugoniot shock conditions are obtained from con-
servation of mass flux [̇M] = 0, momentum flux [W + Σv2] = 0 and energy flux
[E] = 0. The shock front is infinitesimally thin, so we assume thatdΩ/dr is continu-
ous across the shock, the angular momentum jump condition isobtained by consider-
ing the conservation ofλ flux across the shock. The jump conditions are,

v− =
c0 +

√

c2
0 − 8Θ−/t̃

2
, λ− = λ0+

c2a2
−

Γ−v−
, and, f (Θ) =

v2−
2
+ h− −

λ2
−

2r2
−
− λ−λ0

r2
−
− c1.

(14)
Here,c0 = (2Θ+/t̃ + v2+)/v+, c1 = v

2
+/2+ h+ − λ2

+/(2r2
+)+ λ+λ0/r2

+ andc2 = v+Γ+(λ+ −
λ0)/a2

+. Subscripts+ and− denote the post- and pre-shock variables, respectively.

3. Solutions and discussions

Due to the coordinate singularity on the horizon, we have to estimate the flow vari-
ables close to the horizon, which isrin = 1.1. Since after integration Eq. (2) remains
a first order differential, so we can expand it by Frobenius expansion forλ(r) about
r = 1 (Becker & Le 2003).

λ(r) = λ0 + B(r − 1)β, r → 1 (15)
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Figure 2. We plot log(v) (a, d, g),log(T ) (b, e, h), andΓ (c, f, i) with log(r) for ξ = 1.0 (a-b),
ξ = 0.5 (d-f) andξ = 0.0 (g-i). The flow parameters of these plots areE = 1.000001, α =
0.01, λ0 = 1.7. Forξ(= 1.0,0.5), we have shocks and they occur atrs = 1110.82, rs = 57.03,
respectively. Butξ = 0.0 gives smooth solution and only one sonic point atrci = 2.238.

where,B = 4
√

2Θλ0αa2rgρe/(Γ
√

t̃Ṁ), β = 2 andρe = ek3Θ3/2(3Θ+2)k1(3Θ+2/η)k2.
By providing the flow parameters (E, λ0, α andṀ), we obtainλ(rin) from Eq. (15).
Now we can integrate Eqs. (2, 12 and 13) outward fromrin with the help of Eqs.
(9 and 11). The correct solution through the critical point is found by supplying the
appropriateṀ.

In Fig. 1a-p, we have plotted the Mach numberM (= v/a) with log(r). The so-
lutions are for (E, λ0) = (1.001, 1.45) (a-d), (E, λ0) = (1.001, 1.55) (e-h), (E, λ) =
(1.001, 1.65) (i-l), and (E, λ) = (1.004, 1.65) (m-p). The viscosity parameterα (marked
on the panels), increases left to right. All the plots are forξ = 1.0. In case of lowλ0

flow (Fig. 1a-d), the inviscid solution is Bondi type, characterized by a single sonic
pointrco far away from the horizon. Keeping the sameE & λ0 but increasingα tanta-
mount to higherλ away from the horizon, which may support accretion shocks. In this
particular case the lower limit ofαwhich triggers shock formation isαl = 0.03147. As
α is increased,λ increases in the outer part of the disc. So more and more energy is go-
ing to the rotational head rather than the radial kinetic energy head, and hence the flow
cannot become supersonic at reasonable distance away from the horizon, and conse-
quently shocks may not form. The upper limit of viscosity parameter to form shock
for these flow parameters isαu = 0.0494. For parameters (E, λ0) = (1.001, 1.55)
(Fig. 1e-h), shock forms even forα = 0.0, but beyondαu = 0.01469 no shock is
found to form. For higher values of flow parameters, shock transitions are not found
(Fig. 1i-p). In Fig.2a-i, we fix (E, λ0 & α) = 1.000001, 1.7, 0.01, and varyξ and
compare the solutions. In Fig. 2a-c,ξ = 1.0, in Fig.2d-fξ = 0.5, and in Fig.2g-i
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Figure 3. RepresentsE−λ0 shock parameter space with and with out viscosity forξ,= 1.0, 0.5.
Theα values are mentioned on the figure.

ξ = 0.0. The flow variables plotted arelog(v) (a, d, g),log(T ) (b, e, h), andΓ (c, f, i).
While ξ , 0.0 shows shock transition, butξ = 0.0 is a smooth solution with an inner
sonic pointrci = 2.238. Although models withξ , 0.0, do show shock but the loca-
tions are at large distance apart. Moreover, the solutions themselves are different too.
This implies accretion solutions crucially depend on its composition, and the emer-
gent spectra will be different too. In Fig.3, we plot the shock domain in theE − λ0

parameter space, for (ξ, α) = (1.0, 0.0), (ξ, α) = (1.0, 0.05), (ξ, α) = (0.5, 0.0),
and (ξ, α) = (0.5, 0.05). For a givenα, the right ward shift of the shock domain
with decreasingξ, which has also been shown for inviscid disc (Chattopadhyay2008;
Chattopadhyay & Chakrabarti 2011; Chattopadhyay et al. 2012). While increasing
α for a givenξ, the parameter space shifts to the left, a typical behavior of viscous
flow (Chakrabarti & Das 2004; Kumar & Chattopadhyay 2013; Kumar et al. 2013).
Therefore the overlapping region changes with either the change ofα or ξ.

In this paper, we have shown that all type accretion solutions are possible for
viscous flow with realistic EoS. In fact one may identify, amongst other solutions,
the ADAF type solutions (Narayan et. al. 1997) in Fig. 1h, j &n, and which are a
part of the general advective solutions. We have shown that,viscous disc solutions
with a variableΓ EoS show shocks, similar to the inviscid solutions, however, only
EoS containing both electrons (positrons) and protons exhibit shock, while EoS of
pair plasma do not show shock. We know to produce accretion shocks, the flow
should be hot (semi-relativisticT ) at least forr <∼ 1000, but pair plasma barely reaches
T ∼ 108K close to the horizon, so the effective boundary layer is not possible for pair
plasma, therefore shocks are not formed fore− − e+. The most interesting solution
would be the one where particle creation processes are considered, so thatξ becomes
variable and not a global constant.
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