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Abstract: Ground based modern telescopes with AO (Adaptive Optics) are at par with
the space borne telescopes in providing unprecedented quality images. Recently, deformable
mirrors using MEMS (Micro-Electro-Mechanical Systems) have become a popular choice for
adaptive mirrors due to various advantages. The continuous facesheet of the MEMS mirror can
be modeled with the help of theory developed for thin plates [1], [2] and [3]. In this paper we
discuss the modeling techniques using energy principles and variational methods [4] and [5].
For modeling and simulations we will follow the specifications of a commercially available
144 actuator continuous facesheet deformable MEMS mirror by Boston Micromachines
Corporation [6]. The dynamics of this mirror is very fast and hence is neglected when
compared to the rate of corrections to be applied and it is assumed that the boundaries of the
mirror are simply supported. Thus our problem simplifies to that of a simply supported thin
plates static under equilibrium condition. The MEMS mirror equation under the influence
of point load matrix is obtained using superposition principle and Navier solution method is
used for solving the deformation matrix for a given force matrix. In the case of an AO system,
first the atmospheric wavefront is measured which then gives the desired shape of the mirror.
Hence the deformation matrix is known and it is required to derive the force matrix, which
essentially means solving the inverse problem. If the measured wavefront has noise which is
normally the case, or the transformation matrix is rank deficient, the inverse problem becomes
ill-posed [7] and [8].
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1. MEMS Mirror Modeling and Solution

The generalized governing equation for thin plate in x− y plane is derived using Hamilton’s principle. For thin plates
it is assumed that the thickness remains constant and hence elasticity equations for x and y dimensions are considered.
The Lagrangian is given by L =U +V −K where U is the total strain energy, V is the total potential energy and K is
the total kinetic energy. Using Hamilton’s principle the virtual Lagrangian is written as [5]
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(dU + dV − dK)dt (1)

In two dimensional case the the virtual energies are given as
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∫
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q(x,y)dw0dxdy (2)

where w0 is the deflection and Mxx, Myy and Mxy are the moments per unit length, (I0, I2) are the mass moments of
inertia, q(x,y) is the distributed vertical force, W0 represents the mid-plane surface. On using fundamental lemma of
calculus of variation the following Euler-Lagrange equation can be obtained [5]
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Here the moments are replaced using moment-deflection relationship and D represents flexural rigidity . By setting the
dynamics to zero, following plate equation for static case is obtained:
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= q(x,y) (4)

For simply supported boundary conditions Navier’s method [5] can be used to solve the linear plate equation 4. The
solution for deflection of thin-plate to a vertical point load Q0 at (x0,y0) is given by

w0(x,y) =
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where a and b are dimensions of plate along x and y directions respectively. For 144 actuators arranged in a square along
x and y directions with a pitch of a/12, where a = b, the net deformation at any (x,y) point can be determined using
superposition principle. The net deformation will be a summation of deformations corresponding to the individual
forces. Let the point force matrix be given by
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Let the plate corners be at (0,0), (12,0), (0,12) and (12,12), then Q1,1 is the force applied at (a/24,a/24), Q1,2 is the
force applied at (3a/24,a/24), Q2,1 is the force applied at (a/24,3a/24) and so on with Q12,12 being the force applied
at (23a/24,23a/24). Now the deformation will be given by
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For the MEMS mirror, when all 144 point forces are acting together the solution is obtained using the superposition
principle as in Figure 1. In general the force-deformation mapping can be written as
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Fig. 1. Left: MEMS mirror deformation; Right: Applied 144 point loads

In the case of AO system we are interested in solving the inverse problem. The transformation G may or may not
be invertible and also noise in measurements can render the inverse problem ill-posed. The SVD (singular value
decomposition) technique gives a pseudoinverse where as regularization can be used for obtaining the optimal number
of singular values. In the regularization method, solutions are selected to sacrifice model fit to data in exchange for
solution stability.
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